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Abstract  

Background: Low-level environmental exposure to lead has been associated with both reduced 

intelligence and symptoms of attention-deficit/hyperactivity disorder (ADHD). However, few 

studies have estimated the association of lead and intelligence independent of ADHD, and it is 

not clear from previous studies whether lead is associated with both inattention and impulsivity 

ADHD symptoms. 

Objectives: We estimated mutually adjusted associations of environmental lead exposure with 

both intelligence and ADHD symptoms, and associations between lead and specific ADHD-

related domains. 

Methods: Blood lead concentrations were measured in a general population of 1,001 children 

aged 8-11 years. We used multivariable linear regression models to estimate associations of 

blood lead concentrations with intelligence quotient (IQ) scores, teacher and parent ratings of 

ADHD symptoms, and measures of inattention and impulsivity. Models were adjusted for 

demographic variables and other environmental exposures (blood levels of mercury and 

manganese, urinary concentrations of cotinine, phthalate metabolites, and bisphenol A). 

Results: Associations of blood lead with lower IQ and higher impulsivity were robust to 

adjustment for a variety of covariates. When adjusted for demographic characteristics, other 

environmental exposures, and ADHD symptoms or IQ, a 10-fold increase in blood lead 

concentration was associated with lower full scale IQ (-7.23; 95% CI: -13.39, -1.07) and higher 

parent- and teacher-rated hyperactivity/impulsivity scores (ADHD Rating Scale, 1.99; 95% CI: 

0.17, 3.81 and 3.66; 95% CI: 1.18, 6.13, respectively) and commission errors (Continuous 

Performance Test, 12.27; 95% CI: -0.08, 24.62). Blood lead was not significantly associated with 

inattention in adjusted models. 
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Conclusions: Low-level lead exposure was adversely associated with intelligence in school-age 

children independent of ADHD, and environmental lead exposure was selectively associated 

with impulsivity among the clinical features of ADHD. 
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Introduction  

Lead is an environmental neurotoxicant known to interfere with brain development (Canfield et 

al. 2003; Lanphear et al. 2005; Surkan et al. 2007). Even a low-level exposure to lead that is 

prevalent in daily living has been associated with reduced intelligence, impaired attention, and 

behavioral problems (Braun et al. 2008; Braun et al. 2006; Chen et al. 2007; Nevin 2007). 

Environmental lead exposure also has been associated with symptoms of attention-

deficit/hyperactivity disorder (ADHD) (Braun et al. 2006) and conduct disorder (Braun et al. 

2008). However, given that intelligence itself may affect attention and behavior (Chen et al. 

2007; Frazier et al. 2004), and that a negative influence of lead on intelligence has been well-

replicated (Needleman and Gatsonis 1990), at least part of the association between lead and 

attention and behavior may be mediated by its negative impact on intelligence. Previous studies 

examining the association between lead burden and neurobehavioral impairments have addressed 

this issue by adjusting for intelligence level as a covariate (Goodlad et al. 2013). 

Thus far, the findings have been inconclusive on whether lead is associated with both the 

domains of ADHD symptoms (i.e., inattention and hyperactivity/impulsivity), or with only one 

of the two domains. Profound and pervasive neurological consequences of high-level lead 

exposure may result in an undifferentiated worsening of ADHD-like symptoms (Needleman 

2009), but it has been suggested that low levels of lead exposure may have a greater influence on 

hyperactivity/impulsivity than on inattention (Nigg et al. 2008; Nigg et al. 2010; Stewart et al. 

2005; Stewart et al. 2006). On the other hand, a recent meta-analysis examined the relation 

between lead burden and ADHD symptoms, and reported similar associations for the two 

symptom domains (Goodlad et al. 2013). Studies that aim to resolve this inconsistency require a 
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sufficient sample size and measurements of both behavioral features, as well as 

neuropsychological indices that can sensitively distinguish between the domains of inattention 

and hyperactivity/impulsivity. 

For example, the Continuous Performance Test (CPT) differentially measures sustained attention 

and response inhibition (Greenberg and Waldman 1993), and, compared with other 

neuropsychological tests, has been reported to be the most strongly correlated with a clinical 

diagnosis of ADHD (Frazier et al. 2004). 

Thus, the primary aim of the current study was to differentiate the specific aspects of attentional 

and behavioral impairments associated with low-level lead exposure by measuring the 

intelligence level, ADHD-related behaviors (rated by multiple informants), and CPT 

performance in a large community sample of school-age children. 

Secondarily, we aimed to confirm the link between environmental lead exposure and 

intelligence, independent of ADHD symptoms. If environmental lead exposure is associated with 

ADHD symptoms, given that ADHD symptoms may interfere with the child’s performance in 

intelligence test (Biederman et al. 2011), it would be reasonable to control for concurrent 

attention and behavioral problems when estimating the association between lead burden and 

intelligence, just as we need to control for intelligence level when examining the relation 

between lead burden and ADHD. Only a few studies investigating the association between lead 

burden and intelligence have achieved this by measuring both the intelligence quotient (IQ) and 

ADHD-related features in a large group of participants (e.g., Nigg et al. 2008). 
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Another important issue is potential confounding by other environmental exposures such as 

mercury, manganese, phthalate metabolites, and bisphenol A, as well as cotinine (a biomarker 

for tobacco exposure), each of which may be associated with ADHD (Bouchard et al. 2007; 

Braun et al. 2009; Cheuk and Wong 2006; Cho et al. 2013; Cho et al. 2010b; Hong et al. 2013; 

Julvez et al. 2010; Kim BN et al. 2009). Few studies have accounted for multiple environmental 

risk factors in the same population (Goodlad et al. 2013). 

Using data from an initial subsample (N = 667) of the current study’s participants (N = 1,089), 

we have previously explored the relationship between lead exposure and ADHD-related 

problems (Cho et al. 2010b). However, we did not have specific research questions about 

whether lead burden (a) differentially impacts intelligence and ADHD, (b) predominantly 

impacts impulsivity among the ADHD-related problems, and (c) independently impacts 

childhood neurobehavioral outcomes after adjusting for a wide range of potential confounders. 

Based on a large community sample of school-age children, we investigated whether 

environmental lead exposure is associated with both reduced intelligence and ADHD symptoms, 

when adjusting for each other as covariates. Next, by adopting an established neuropsychological 

test of attention, we examined whether lead burden is predominantly associated with a specific 

domain of ADHD-related problems. Lastly, we adjusted for blood and urine concentrations of 

other environmental risk factors to examine potential confounding of associations between lead 

and cognitive and behavioral outcomes. 
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Methods  

Study population  

The detailed protocol of the study was previously described elsewhere (Cho et al. 2013; Hong et 

al. 2013). Briefly, participants were recruited from five South Korean administrative regions 

(i.e., two urban cities, two industrial cities, and one rural district). We selected one to three 

schools that represented the local demographics, and sent letters of invitation to participate to 

parents of third- and fourth-graders. Prior to participation, parents and children were provided 

with detailed information about the study and they provided written informed consent. The study 

protocol was approved by the institutional review board of the Seoul National University 

Hospital. The study was conducted in accordance with the Declaration of Helsinki. 

Measurement of cognitive and neurobehavioral function  

Each child was administered the following tests in a quiet room under the supervision of a 

licensed specialist in clinical psychology (SMS) who was unaware of the child’s toxicant levels. 

Children’s verbal, performance, and full scale IQs were measured via the abbreviated form of the 

Korean Educational Development Institute’s Wechsler Intelligence Scales for Children (KEDI-

WISC) (Park et al. 1996), which tests vocabulary, arithmetic, picture arrangement, and block 

design. The sum of the first two subtests’ age-adjusted, scaled-scores was used to estimate verbal 

IQ, and the sum of the last two was used to estimate performance IQ (Park et al. 1996). In the 

abbreviated battery, only the full scale IQ is converted so that a score of 100 equates to the mean 

of the population. Scores from the abbreviated battery are known to strongly correlate with the 

WISC full scale IQ, both in the original instrument (Kaufman 1976) and in the age-standardized 

Korean version (Kim and Kim 1986). 
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Children underwent a computerized CPT (Greenberg and Waldman 1993). In this test, the 

examinee is shown visual stimuli on a screen, one every 2 sec, for 100 msec. The examinee is 

required to respond to a square containing a triangle (target) but not to a square containing 

another square or a circle (non-target). The target stimulus was presented 22.5% of the time 

during the first half of the test and 77.5% of the time during the second half of the test. The test 

assesses 4 major outcomes: 1) omission errors (failure to respond to targets; a measure of 

inattention); 2) commission errors (responding erroneously to non-targets; a measure of 

impulsivity); 3) response time for correct responses; and 4) the standard deviation of these 

response times (response time variability; a measure of consistency of attention). The CPT was 

standardized for age among Korean children and adolescents, and its reliability and validity have 

been established (Shin et al. 2000). 

Parents and schoolteachers of the participating children completed the ADHD Rating Scale 

(ADHD-RS) (DuPaul et al. 1998) to evaluate symptoms of ADHD. The ADHD-RS contains 18 

items adopted from the 18 symptoms listed in the Diagnostic and Statistical Manual of Mental 

Disorders, Fourth Edition (DSM-IV) criteria for ADHD; accordingly 9 items are related to 

inattention and 9 to hyperactivity and impulsivity, with each item rated from 0 to 3. Reliability 

and validity of the Korean version of the ADHD-RS have been well established among Korean 

children (So et al. 2002). 

Parents also completed a questionnaire about demographic and other possibly relevant data, such 

as paternal education level and socioeconomic status. 

9
 



 

 

       

        

       

     

    

   

        

         

           

        

 

          

      

      

         

    

      

      

        

         

     

Measurement of blood lead  

Venous blood (5 mL) was collected from each child in metal-free tubes, and the samples were 

frozen and stored at -20°C. Before the analysis, the blood samples were brought to room 

temperature and vortexed well after thawing. The samples (0.1 mL) were diluted in 1.8 mL of 

matrix modifier reagent (composed of Triton X-100 and ammonium hydrogen phosphate 

dibasic), and then were mixed well using the vortex mixer and assayed using an atomic 

absorption spectrometer–graphite furnace (Analyst 800-Zeeman collection, Perkin Elmer, 

Singapore). The limit of detection for lead using this method was 0.058 µg/dL. The samples 

were analyzed in duplicate and we modeled the mean value of the two assays; when the 

coefficient of variation of the two assays was above or equal to 10%, we analyzed the sample 

again (in duplicate) until we obtained a mean value with a coefficient of variation below 10%. 

The inter-run coefficients of variation were 1.74%. 

Blood concentrations of mercury (Rhee et al. 2013) and manganese (Kim Y et al. 2009) as well 

as creatinine-standardized urinary concentrations of cotinine (Cho et al. 2013; Cho et al. 2010b), 

phthalate metabolites (mono-n-butyl phthalate, MnBP; mono-2-ethyl-5-oxohexyl phthalate, 

MEOHP; mono-2-ethylhexyl phthalate, MEHP) (Cho et al. 2010a; Kim BN et al. 2009) and 

bisphenol A (Hong et al. 2013) were also measured and included as covariates in the analysis. 

All analyses were carried out by Neodin Medical Institute (Seoul, Korea), a laboratory certified 

by the Korean Ministry of Health and Welfare. For the internal quality assurance and control, 

commercial reference materials were obtained from the German External Quality Assessment 

Scheme (G-EQUAS, Germany). As part of the external quality assurance and control, the 

institute passed the G-EQUAS operated by Friedrich-Alexander University, the Centers for 
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Disease Control and Prevention (CDC)’s Lead and Multi-element Proficiency (LAMP) program 

(Atlanta, GA, USA), and the Quality Assurance Program operated by the Korea Occupational 

Safety and Health Agency (KOSHA, Korea). 

Statistical analyses  

Differences between the children included in and excluded from the main analyses were 

estimated using Student’s t-tests for continuous variables and chi-square tests for categorical 

variables. Blood lead concentrations (µg/dL) followed a log-normal distribution and were 

therefore log10-transformed for the statistical analysis. Simple and multiple linear regression 

analyses were performed to assess whether IQ (verbal, performance, and full scale) or ADHD-

related scores (ADHD-RS and CPT) were predicted by blood lead level. First, the analyses were 

unadjusted for potential confounders. Then, in the first adjusted model, the analyses were 

conducted while controlling for age (continuous), gender, residential region (urban, industrial, or 

rural), paternal education level (continuous), and socioeconomic status (yearly family income 

above or below $25,000). Next, we added full scale IQ (when predicting ADHD-RS or CPT 

scores) or ADHD-related variables (i.e., parent- and teacher-rated ADHD-RS inattention and 

hyperactivity/impulsivity scores, and CPT scores; when predicting IQ) as covariates. Lastly, we 

further controlled for log10-transformed concentrations of mercury, manganese, cotinine, 

phthalate metabolites, and bisphenol A, in addition to the covariates described above. The 

confounding variables were selected based on known predictors of neurodevelopment and 

previous publications (Cho et al. 2013; Hong et al. 2013; Kim BN et al. 2009; Nigg et al. 2010). 

We performed complete case analyses to address missing data for model covariates. All 

statistical analyses were performed using SPSS 18.0 for Windows (SPSS Inc., Chicago, IL). All 
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results were considered to be statistically significant when P value was less than 0.05 (two-

tailed). 

Results  

A total of 1,089 children were initially recruited, among whom blood sample was available for 

1,005 children. Four children were further excluded from the analyses, because 2 had a history of 

seizure disorder, 1 of neonatal hypoxia, and 1 of head trauma accompanied by cerebral 

hemorrhage. The characteristics of the 1,001 participants are described in Table 1. The children 

excluded from the analysis were similar to the included population (data not shown), except for 

lower full scale IQ (105.18 ± 12.47 compared with 110.07 ± 14.46, p = 0.002) and a higher 

proportion of rural residents (35.2% compared with 17.3%) and lower proportion of urban 

residents (33.0% compared with 43.4%; p < 0.001). 

A total of 839 children had complete data for all model covariates and outcomes (i.e., 25 

variables shown in Table 1). Missing data ranged from 0% to 8.2%. Results from Little’s test 

(Little 1988) suggested that the data were missing completely at random (χ2 = 165.88, p = 

0.876). 

In this study, no measurement of blood lead was below the limit of detection. The minimum, 5th 

and 25th percentiles, median, 75th and 95th percentiles, and maximum of blood lead 

concentrations were 0.53 µg/dL, 1.03 µg/dL, 1.47 µg/dL, 1.81 µg/dL, 2.25 µg/dL, 3.01 µg/dL, 

and 6.16 µg/dL, respectively. Descriptive data for the distributions of the other environmental 

chemicals are presented in Supplemental Material, Table S1. 
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Without adjusting for any covariate, blood lead concentrations were negatively associated with 

verbal, performance, and full scale IQ, and positively associated with both parent- and teacher-

rated ADHD-RS inattention, hyperactivity/impulsivity, and total scores (Table 2, Model 1). For 

the CPT, only commission errors and response time variability were significantly associated with 

blood lead concentrations. 

Blood lead concentrations remained associated with lower verbal, performance, and full scale IQ 

scores when adjusted for age, gender, residential region, paternal education level, and yearly 

income (Table 2, Model 2), and the demographic variables plus parent- and teacher-rated 

ADHD-RS inattention and hyperactivity/impulsivity scores, and CPT scores (Model 3). After 

additional adjustment for the other environmental chemicals (Model 4), the association with 

performance IQ was no longer statistically significant (-2.04; 95% CI: -4.51, 0.42), but verbal 

and full scale IQs were still significantly lower in association with a 10-fold increase in blood 

lead concentration (-2.64; 95% CI: -4.98, -0.30 and -7.23; 95% CI: -13.39, -1.07, respectively). 

In addition, the coefficients for the association between lead burden and IQs were similar 

throughout the analyses, suggesting that the association between environmental lead exposure 

and lower IQ is robust to confounding by other exposures, and that it is not mediated by effects 

on ADHD. No variance inflation factor was greater than 5.44. 

When ADHD-RS scores were the outcome variables, however, adjusting for demographic 

information (Table 2, Model 2) and full scale IQ (Model 5) attenuated the associations between 

blood lead concentrations and ADHD symptoms compared with the unadjusted model (Model 

1), particularly for inattention versus hyperactivity/impulsivity. After additional adjustment for 

other environmental chemicals (Model 6), blood lead concentrations were still significantly 
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associated with parent and teacher ratings for hyperactivity/impulsivity, but were no longer 

significant for inattention scores. When CPT scores were the outcome variables, blood lead 

concentrations were associated with the measure of impulsivity (i.e., commission errors) but not 

inattention (i.e., omission errors) when adjusted for demographic information (Table 2, Model 2) 

and additionally for IQ (Model 5). Although subsequent adjustment for blood or urine 

concentrations of other environmental chemicals attenuated the association (from 13.86; 95% CI: 

1.82, 25.89 based on Model 5 to 12.27; 95% CI: -0.08, 24.62 based on Model 6), the findings 

still support a potential selective effect of environmental lead exposure on the impulsivity 

domain (versus the inattention domain) of ADHD. No variance inflation factor was greater than 

1.61. 

To confirm the robustness of our findings, we tested a range of different combinations of 

covariates. First, we adjusted associations between lead and IQ only for the ADHD-RS 

hyperactivity/impulsivity scores and CPT commission errors among the ADHD-related variables 

(see Supplemental Material, Table S2, Models 1 and 2). Next, we performed the analysis 

adjusting for each ADHD-RS score separately (i.e., parent-rated inattention, parent-rated 

hyperactivity, teacher-rated inattention, and teacher-rated hyperactivity) (Supplemental Material, 

Table S3, Models 1, 2, 3, and 4, respectively). Lastly, we estimated the association between lead 

burden and ADHD-related problems (parent and teacher ratings, CPT scores) adjusting for either 

verbal IQ or performance IQ, instead of the full scale IQ (see Supplemental Material, Table S4). 

Across the various tests, the findings were similar, and did not alter the conclusion of the study. 
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Discussion  

The present study confirmed previous findings that low-level environmental lead exposure is 

associated with lower intelligence in school-age children. In addition, our results suggest that 

environmental lead exposure may be selectively associated with impulsivity among the clinical 

features of ADHD. 

The negative associations between lead burden and IQ were robust, as evidenced by the largely 

comparable strength and statistical significance of the associations with and without the 

covariates. Most studies investigating the impact of lead on intelligence have relied on 

observational design rather than a randomized trial, which limits our ability to infer causal 

relationships. In this regard, it is noteworthy that concurrent rather than earlier blood lead levels 

have shown the strongest association with IQ in school-age children (Chen et al. 2007; Chen et 

al. 2005; Lanphear et al. 2005). Generally speaking, exposure to neurotoxicants earlier in life has 

a more critical effect on the brain; this is also the case for many other environmental chemicals 

(Braun et al. 2006; Braun et al. 2011; Julvez et al. 2010). Therefore, regarding the reported 

correlations between concurrent lead exposure and child IQ, an alternative hypothesis may need 

to be taken into account when inferring the direction of causality. For example, a child who is 

experiencing symptoms of ADHD is perhaps at a higher chance of undergoing greater amounts 

of environmental lead exposure (Goodlad et al. 2013). In addition, ADHD symptoms may also 

negatively affect the child’s performance in intelligence tests (Frazier et al. 2004). Therefore, 

according to this hypothetical scenario, a child’s inattentive, hyperactive, or impulsive symptoms 

would be responsible for both the high level of lead exposure and low intelligence. The best way 

to test for the direction of causality would be through a prospective randomized trial of different 
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levels of lead exposure, which is not realistic due to ethical reasons (Goodlad et al. 2013). 

Alternatively, we controlled for ADHD-related problems when examining the relation between 

lead burden and intelligence, just as we controlled for intelligence when testing the relation 

between lead burden and behavior. A clear determination of causal direction or the potential 

influence of mediation may not be possible based on our analysis, but our findings suggest that 

environmental lead exposure has independent effects on both intelligence and ADHD. In 

addition, as mentioned above, lead exposure is one of the few for which concurrent rather than 

earlier exposure has shown the strongest association with childhood cognition and behavior. 

Therefore, studies investigating associations between neurobehavioral outcomes in children and 

other environmental risk factors should consider potential confounding by environmental 

exposure to lead. 

Another important issue that remains equivocal in the literature is the specific domain of 

neurobehavioral impairment associated with lead exposure. Previous findings have been 

inconsistent regarding whether lead contributes to inattention in addition to impulsivity (Goodlad 

et al. 2013; Nigg et al. 2008; Nigg et al. 2010; Stewart et al. 2005; Stewart et al. 2006). In the 

present study, blood lead concentrations were significantly associated with all ADHD-RS 

domains before adjustment, but associations with inattention scores were notably attenuated after 

adjustment for a range of covariates. Chen et al. (2007) reported evidence consistent with a direct 

effect of blood lead concentrations on concurrent externalizing problems at 7 years of age that 

did not appear to be mediated through an effect of lead on IQ (Chen et al. 2007). The Oswego 

Children’s Study also addressed the issue of impulsivity versus inattention in a study of postnatal 

lead exposure as well as prenatal polychlorinated biphenyl (PCB) exposure, and reported that 
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both exposures were predominantly associated with impulsivity, as measured by the CPT 

(Stewart et al. 2005) and the Differential Reinforcement of Low Rates task (DRL) (Stewart et al. 

2006). Our findings support and extend some previous reports (Chen et al. 2007; Nigg et al. 

2008; Nigg et al. 2010; Stewart et al. 2005; Stewart et al. 2006) by showing that low-level lead 

exposure was associated with impulsivity, but not inattention, in school-age children, and that the 

association persisted when adjusted for IQ and other environmental exposures that may mediate 

or confound neurobehavioral effects of lead. 

As predicted, associations with lead exposure varied between the specific domains of ADHD as 

measured by the CPT. Specifically, blood lead levels were selectively associated with 

commission errors, a measure of impulse control. In addition, decreased CPT response time in 

combination with increased commission errors is considered to indicate that the child is highly 

impulsive (Butler and Montgomery 2005). Indeed, our results indicated that the direction of 

association between blood lead level and CPT response time was consistently negative, albeit not 

statistically significant, and these findings further support the robustness of the association 

between lead burden and impulsivity. Lead was also associated with behavioral measures of 

impulsivity (i.e., parent and teacher ratings on the ADHD-RS) after adjustment for potential 

confounders, consistent with higher commission scores on the CPT. 

Reduction in lead burden has been linked to a decline in antisocial behavior (e.g., violence and 

crime) (Nevin 2000, 2007; Stretesky and Lynch 2001) but not to a decreased prevalence of 

ADHD (Goodlad et al. 2013). Several possible explanations can be drawn from the current 

findings. First, low-level exposure to lead may specifically affect impulsivity, rather than 

contributing to all ADHD domains. Second, previously reported associations between low-level 
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lead exposure and ADHD may have been confounded by exposures to other neurotoxicants 

(Claus Henn et al. 2012; Kim Y et al. 2009) that have increased in prevalence as environmental 

lead exposures have declined. Third, it is worth noting that there are limited data on trends in 

ADHD. The first national study in the United States that relied on DSM-IV diagnostic criteria for 

ADHD was only published in 2007 (Froehlich et al. 2007); there are no data on trends using 

DSM-IV criteria. 

The present study did have some limitations. First, the cross-sectional nature of the study design 

and a single, concurrent measurement of lead and other environmental chemicals limit our ability 

to conclude that exposures preceded the outcomes. Second, other environmental exposures that 

have been linked to ADHD in prior studies were not adjusted for, such as prenatal tobacco 

exposure (Nigg 2006) and organophosphate exposure (Bouchard et al. 2010). Prenatal tobacco 

exposure is an important potential confounder that also may interact with lead to modify the 

association between lead exposure and ADHD (Froehlich et al. 2009). A higher level of 

organophosphate pesticide exposure was suggested to contribute to the childhood burden of 

ADHD (Bouchard et al. 2010). In addition, failure to measure at least one PCB congener 

represents a weakness of the study given potential effects of PCBs on the outcomes of interest 

(Stewart et al. 2005; Stewart et al. 2006). Third, we did not evaluate possible synergistic or 

interactive effects of other environmental exposures, which should be a focus of future studies. 

Fourth, other potential confounding variables may need to be controlled for, including birth 

complications or family characteristics. 

In conclusion, we demonstrated that low-level lead exposure was associated with lower 

intelligence in school-age children independent of associations with attentional and behavioral 
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problems, and that environmental lead exposure was selectively associated with impulsivity 

among the clinical features of ADHD. The findings further highlight the need for understanding 

the mental health effects of co-exposure to different combinations of environmental 

neurotoxicants. 
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Table 1. Demographic characteristics of participants [mean ± SD or n (%) unless otherwise 

indicated] (total n = 1,001). 

Characteristic Value 
Age (years) 9.05 ± 0.70 
Female 474 (47.4) 
Region 

Urban 434 (43.4) 
Industrial 394 (39.4) 
Rural 173 (17.3) 

Paternal education 
Years 13.75 ± 2.20 
Missing 82 

Yearly income 
> $25,000 576 (62.1) 
≤ $25,000 352 (37.9) 
Missing 73 

IQ 
Verbal 22.99 ± 5.38 
Performance 23.41 ± 5.30 
Full scale 110.07 ± 14.46 
Missing 2 

ADHD-RS, parent-rated 
Inattention 5.31 ± 4.91 
Hyperactivity/Impulsivity 3.52 ± 3.96 
Total 8.84 ± 8.34 
Missing 66 

ADHD-RS, teacher-rated 
Inattention 5.08 ± 6.53 
Hyperactivity/Impulsivity 3.61 ± 5.46 
Total 8.68 ± 11.41 
Missing 59 

CPT 
Omission errors 61.13 ± 25.00 
Commission errors 71.57 ± 28.23 
Response time 46.72 ± 12.67 
Response time variability 68.04 ± 35.10 
Missing 2 

Environmental chemical concentrations (geometric mean ± GSD)a 

Mercury (µg/L) 2.44 ± 1.52 
Manganese (µg/L) 13.82 ± 1.35 
Cotinine (µg/g Cr) 1.87 ± 3.52 
MnBP (µg/g Cr) 51.66 ± 1.85 
MEOHP + MEHP (µg/g Cr) 44.71 ± 1.95 
Bisphenol A (µg/g Cr) 1.32 ± 2.33 
Lead (µg/dL) 1.80 ± 1.40 

Abbreviations: ADHD-RS, attention-deficit/hyperactivity disorder rating scale; Cr, creatinine; 

CPT, continuous performance test; GSD, geometric standard deviation; IQ, intelligence quotient; 
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MEHP, mono-2-ethylhexyl phthalate; MEOHP, mono-2-ethyl-5-oxohexyl phthalate; MnBP, 


mono-n-butyl phthalate; SD, standard deviation.
 
aNumbers of missing observations for environmental chemicals: cotinine n = 12, MnBP n = 7, 


MEOHP + MEHP n = 7, bisphenol A n = 7.
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Table 2. Associations between blood lead concentration and the scores from the intelligence test, ADHD-RS and CPT. 
Outcome Model 1a 

B (95% CI) 
P-value Model 2b 

B (95% CI) 
P-value Model 3c 

B (95% CI) 
P-value Model 4d 

B (95% CI) 
P-value Model 5e 

B (95% CI) 
P-value Model 6f 

B (95% CI) 
P-value 

IQ 
Verbal -2.79 (-5.10, -0.47) 0.018 -2.64 (-4.99, -0.29) 0.028 -2.68 (-4.96, -0.40) 0.021 -2.64 (-4.98, -0.30) 0.027 
Performance -3.18 (-5.45, -0.90) 0.006 -2.59 (-4.96, -0.23) 0.032 -2.58 (-4.99, -0.18) 0.035 -2.04 (-4.51, 0.42) 0.104 
Full scale -8.34 (-14.54, -2.14) 0.008 -7.86 (-14.07, -1.65) 0.013 -7.84 (-13.84, -1.84) 0.010 -7.23 (-13.39, -1.07) 0.021 

ADHD-RS, parent-rated 
Inattention 3.09 (0.93, 5.26) 0.005 1.90 (-0.26, 4.06) 0.085 1.38 (-0.76, 3.53) 0.206 0.94 (-1.27, 3.16) 0.402 
Hyperactivity/impulsivity 3.71 (1.98, 5.45) <0.001 2.58 (0.82, 4.34) 0.004 2.40 (0.64, 4.17) 0.008 1.99 (0.17, 3.81) 0.032 
Total 6.79 (3.12, 10.45) <0.001 4.46 (0.78, 8.13) 0.017 3.76 (0.09, 7.43) 0.044 2.90 (-0.86, 6.68) 0.131 

ADHD-RS, teacher-rated 
Inattention 6.15 (3.28, 9.02) <0.001 4.01 (1.16, 6.86) 0.006 2.87 (0.12, 5.61) 0.040 2.72 (-0.12, 5.56) 0.060 
Hyperactivity/impulsivity 5.85 (3.46, 8.25) <0.001 4.09 (1.71, 6.47) 0.001 3.74 (1.36, 6.13) 0.002 3.66 (1.18, 6.13) 0.004 
Total 12.01 (7.00, 17.02) <0.001 8.10 (3.18, 13.03) 0.001 6.61 (1.78, 11.45) 0.007 6.38 (1.36, 11.40) 0.013 

CPT 
Omission errors 9.42 (-1.31, 20.16) 0.085 5.14 (-6.02, 16.30) 0.366 1.96 (-8.95, 12.88) 0.724 0.68 (-10.53, 11.90) 0.905 
Commission errors 21.09 (9.01, 33.16) 0.001 16.97 (4.73, 29.20) 0.007 13.86 (1.82, 25.89) 0.024 12.27 (-0.08, 24.62) 0.052 
Response time -2.86 (-8.31, 2.58) 0.303 -3.66 (-9.48, 2.15) 0.217 -4.31 (-10.13, 1.51) 0.146 -4.65 (-10.66, 1.34) 0.128 
Response time variability 23.47 (8.44, 38.49) 0.002 14.14 (-0.75, 29.03) 0.063 11.09 (-3.66, 25.84) 0.140 9.13 (-5.96, 24.24) 0.235 

Abbreviations: ADHD-RS, attention-deficit/hyperactivity disorder rating scale; B, unstandardized regression coefficient; CI, confidence interval; CPT, 


continuous performance test; IQ, intelligence quotient; SE, standard error.
 
aModel 1: unadjusted for covariates (n = 1,001). bModel 2: adjusted for demographic variables (age, gender, residential region, paternal education level, and
 

yearly income) (n = 908). cModel 3: adjusted for demographic variables plus ADHD-RS scores (parent- and teacher-rated scores for inattention and
 

hyperactivity/impulsivity) and CPT scores (n = 851). dModel 4: adjusted for demographic variables and ADHD-RS and CPT scores, plus log10-transformed
 

environmental chemical concentrations [blood mercury and manganese concentrations, and creatinine-standardized urine concentrations of cotinine, phthalate 


metabolites (MnBP, MEOHP + MEHP), and bisphenol A] (n = 839). eModel 5: adjusted for demographic variables and full scale IQ (n = 907). fModel 6: 


adjusted for demographic variables, full scale IQ, and environmental chemical concentrations (n = 895).
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