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Abstract

Background: Cohort studies of the relationship between air pollution exposure and chronic
health effects require predictions of exposure over long periods of time.

Objectives: We developed a unified modeling approach for predicting fine particulate matter,
nitrogen dioxide, oxides of nitrogen, and black carbon (as measured by light absorption
coefficient) in six U.S. metropolitan regions from 1999 through early 2012 as part of the Multi-
Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

Methods: We obtained monitoring data from regulatory networks and supplemented those data
with study-specific measurements collected from MESA Air community locations and
participants’ homes. In each region, we applied a spatiotemporal model that included a long-term
spatial mean, time trends with spatially varying coefficients, and a spatiotemporal residual. The
mean structure was derived from a large set of geographic covariates that was reduced using
partial least squares regression. We estimated time trends from observed time series and used

spatial smoothing methods to borrow strength between observations.
-y : : oy 2
Results: Prediction accuracy was high for most models, with cross-validation R? (R¢y) greater
. . . 2
than 0.80 at regulatory and fixed sites for most regions and pollutants. At home sites, overall Rcy

ranged from 0.45 to 0.92 and temporally adjusted RZCV ranged from 0.23 to 0.92.

Conclusions: This novel spatiotemporal modeling approach provides accurate fine-scale
predictions in multiple regions for four pollutants. We have generated participant-specific
predictions for MESA Air in order to investigate health effects of long-term air pollution
exposures. These successes highlight modeling advances that can be adopted more widely in

modern cohort studies.



Introduction

Cohort studies have shown an association between long-term exposure to air pollution and
cardiovascular morbidity and mortality (Brook et al. 2010; Miller et al. 2007; Pope and Dockery
2006). To estimate these associations, epidemiologic studies develop exposure prediction models
to predict pollutant concentrations over long periods of time at cohort home addresses based on
monitoring data from regulatory networks or study-specific monitoring campaigns. While early
models were based on region-wide averages or nearest-monitor approaches, more current
methods include land-use regression (LUR) (Hoek et al. 2008; Jerrett et al. 2007), the use of
satellite and remote sensing data (Kloog et al. 2011), geostatistical methods such as kriging
(Beelen et al. 2009), generalized additive models (Hart et al. 2009), or a combination of these

techniques (Beckerman et al. 2013; Bergen et al. 2013; Mercer et al. 2011).

The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) is investigating the
association between long-term air pollution exposure and measures of cardiovascular health
(Kaufman et al. 2012). MESA Air is following a cohort of more than 6000 individuals in six
metropolitan regions: Baltimore, Maryland; Chicago, Illinois; Los Angeles, California; New
York, New York; St. Paul, Minnesota; and Winston-Salem, North Carolina. The primary
exposures of interest in MESA Air are fine particulate matter (PM;s), nitrogen dioxide (NO,),
oxides of nitrogen (NOx), and black carbon, as measured by Light Absorption Coefficient (LAC).
One goal of MESA Air is the development of advanced statistical methods that incorporate
extensive supplemental monitoring to improve the prediction of intra-urban pollutant variability.
MESA Air health effect analyses require spatiotemporal predictions of ambient outdoor
concentrations for all four pollutants in all six metropolitan regions for times ranging from 1999

through 2012.



In general, exposure prediction models developed in one city do not transfer well to another city
(Allen et al. 2011), and so prediction models are often study- and city-specific (e.g. Franklin et al.
2012). A challenge for multi-city studies like MESA Air that combine data from sub-cohorts and
include several pollutant measures is generating predictions that are of comparable quality across
pollutants and cities. Here we present a unified and flexible spatiotemporal modeling framework
for the four MESA Air pollutants. We apply a standardized approach to model selection for all
pollutants and regions, allowing the intrinsic flexibility of our modeling framework to account

for differences in the way pollution processes behave in different regions.

Methods

To predict outdoor concentration of pollutants at MESA Air participant residences, we fit a
separate spatiotemporal exposure prediction model for each pollutant (PM,s, NO,, NOx, and
LAC) in each metropolitan region. Briefly, our model decomposes the space-time field of
concentrations into spatially varying long-term (i.e. duration of study period) averages, spatially
varying seasonal and long-term trends, and spatially correlated but temporally independent
residuals, and accommodates data from the complex monitoring design described below. We
modeled on a two-week time scale due to the two-week sampling of MESA Air supplementary
monitoring instruments (see below); this allows for flexible aggregation of predictions to time

scales of interest for health effects analyses (e.g. twelve months prior to clinic visit).

Monitoring data

We used three sources of outdoor air monitoring data. We obtained hourly NO, and NOx and
daily PM; s concentration measurements in each metropolitan region from January 1, 1999 to

March 31, 2012 from the Environmental Protection Agency (EPA) Air Quality System (AQS),



including data from the Interagency Monitoring of Protected Visual Environments (IMPROVE)
network (U.S. EPA 2013). No AQS data were used for black carbon due to differences in
collection methods from the MESA Air LAC measurement methods described below. We
aggregated hourly data into daily averages, and subsequently averaged daily values to the two-
week scale. AQS monitors that had less than two years of data or had irregular temporal

coverage (e.g., operated only in the summer) were not used.

In each metropolitan region, we defined the modeling area to be locations within approximately
75 km of each metropolitan center (see Figure 1). AQS monitors within the modeling regions
were considered for inclusion in the model, and predictions at participant residences were
restricted to locations within these modeling regions. In New York, MESA Air participants were
recruited from both New York City and Rockland County, and so the modeling region included
locations near both areas. In Winston-Salem, only one AQS monitoring location for NO, and
NOx met inclusion criteria. In order to have a complete time series for the 14-year modeling
period, an AQS monitor in Charlotte, NC was included for estimating time trends. In Chicago,
the modeling region was further restricted to locations west of -87.5°W longitude due to some
covariates being unavailable east of that meridian. In Los Angeles, only locations south and/or

west of the San Gabriel Mountains were included.

To better capture the within-city variability of pollutant concentrations, MESA Air conducted a
umentary monitoring campaign targeting the study cohort from July 2005 through August 2009.
The MESA Air measurements were two-week cumulative measurements that began and ended
on Wednesdays. Measurements of NO, and NOx were made using Ogawa passive samplers and

PM, s mass was measured on Harvard Personal Environmental Monitor impactors using Teflon



filters. LAC was computed from the Teflon filters via reflectance. A detailed description of the

data collection and site selection procedures has been previously published (Cohen et al. 2009).

The MESA Air monitoring campaign included three types of monitoring sites: fixed, home, and
snapshot. Fixed sites were operated for the duration of the four-year MESA Air sampling period
to provide long time-series of measurements, with one fixed site collocated with an AQS monitor
in each region. Samples of participant residences in each metropolitan region were selected for
monitoring as home outdoor sites on a rotating basis, with a majority of locations monitored 1 to
3 times in different seasons. Snapshot sites, which measured only NO, and NOx, were located in
clusters to capture gradients near sources (e.g., primary roadways) and monitored for three two-

week periods, one each in winter, summer, and either spring or fall.

In New York City, data from the New York City Community Air Survey (NYCCAS) were used
to supplement the AQS and MESA Air data (Matte et al. 2013; NYC Department of Health
2014). The NYCCAS data consist of two-week measurements of PM; s, NO,, NOx, and LAC
collected during December 2008—December 2010 in a manner consistent with MESA Air
sampling protocols. Five NYCCAS reference sites (one in each borough) collected
measurements throughout the sampling period, and 150 NYCCAS distributed sites were
monitored once per season during this time. Because of the similarity in monitoring scheme, we
treated NYCCAS reference sites in the same manner as MESA Air fixed sites, and NYCCAS
distributed sites in the same manner as MESA Air home sites, in our models. The NYCCAS data
and a small subset of the MESA Air two-week data were centered on different weeks than the
majority of the MESA Air measurements. To align these measurements with the rest of the
MESA Air data, we treated these measurements as if they were made one week earlier or later,

as appropriate.



Between 0.4% (LAC) and 1.6% (NO,) of the pollutant measurements were below the limit of
detection (LOD) and were replaced with the value LOD/2. The number of each type of
monitoring site by region and pollutant is provided in Table 1. The range of the number of PM; 5
observations at each monitoring site during the study period is provided in Table 2, along with
summary statistics for the site means. Corresponding statistics for NO,, NOx, and LAC

observations are provided in Supplemental Material Tables S1 through S3.

Geographic covariates

We compiled more than 300 geographic covariates for use in the model (Supplemental Material,
Table S4). These covariates included proximity measures (distance to nearest major road,
intersection, truck route, railway, railyard, coastline, airport, and port) and buffer measures
(major road length, truck route length, land-use category, long-term vegetation index, population
density, and emission sources). We included a long-term average of the dispersion model output
from a modified implementation of the Caline3QHCR line-source model (Eckhoff and
Braverman 1995). The Caline3QHCR model incorporates distance, traffic volume, meteorology,

and diurnal traffic patterns in each region.

Geographic covariates with minimal variation or potentially highly influential values were
excluded from the modeling process. Specifically, variables were removed if (a) more than 80%
of monitoring sites had the same value, (b) more than 2% of observations were more than five
standard deviations away from mean, (c) the standard deviation of the distribution of values at
participant residences was more than five times the standard deviation of the distribution of
values at monitoring locations, or (d) the maximum value was 10% among all monitoring sites

(for land-use variables only). These filters were applied separately for each pollutant and region.



Spatiotemporal model

The monitoring data were highly unbalanced, with a small number of locations providing long
time series of several years’ duration and a larger number of locations providing broader spatial
coverage, but at a relatively small number of time points. A hierarchical spatiotemporal model
had been previously developed to accommodate the unbalanced nature of the MESA Air data

(Lindstrom et al. 2013; Sampson et al. 2011; Szpiro et al. 2010). This model can be written as

C(s,1) = u(s,t) + v(s,?), [1]

where C(s,f) represents the log-transformed two-week average pollutant concentration at location
s and time . The u(s,f) term is the spatiotemporal mean surface and the v(s,f) term represents

spatiotemporal residual variation.

We break down the spatiotemporal mean into components

w(s,0) = Po(s) + Ziet Bi(s) fi(0), 2]

where fy(s) is the long-term mean at location s, fi(f) are smooth time trends, and Si(s) are

spatially-varying coefficients for the time trends.

The time trends are estimated from AQS and MESA Air fixed sites (and NYCCAS reference
sites in New York) using a procedure developed by Fuentes et al. (2007) and previously
described in detail by Sampson et al. (2011). In brief, we applied an Expectation-Maximization
procedure to fill in missing values in the time series and derived the trends from a singular value
decomposition. We smoothed the trends using splines, controlling the smoothness with the
degrees of freedom (df) parameter. The model assumes the time trends account for enough of the

temporal structure that the residuals are uncorrelated in time.
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The long-term averages fo(s) and time trend coefficients f(s) are modeled as spatial random

fields with a spatial mean, distributed as

Pi~ NXi(s)a;, Z(¢;, 0, 17)),i=0,1,..., m. [3]

Here, Xi(s) are reduced-dimension summaries of the geographic covariates (described in detail
below) at location s and a; are vectors of coefficients to be estimated. The covariance structure
for B, denoted by Z;, is either an independence model with variance t; or a spatial smoothing
model with exponential covariance function parameterized by range ¢;, partial sill o;, and nugget

7; (Cressie 1993).

The zero-mean spatiotemporal residual term v(s,¢) in [1] has a spatial correlation structure and is
assumed independent at each time point. It includes a random effect for each time point to model

short-term variations that affect an entire region, such as large-scale meteorological events.

PLS scores

Rather than include each of the hundreds of geographic covariates directly in the model or use
variable selection methods, we reduced the dimensionality of the covariates using partial least
squares (PLS). In a manner similar to principal components analysis (PCA), PLS computes
linear combinations, called scores, of the columns of a data matrix. Unlike PCA, the PLS
procedure constructs scores that maximize the covariance between the scores and an outcome
rather than the variance between the scores. A technical explanation of the PLS algorithm is
provided by Abdi (2010). Sampson et al. (2013) described the application of PLS for spatial

models, and here we describe how we applied the method to spatiotemporal data.

10



PLS regression requires a single outcome value for each location. Because the MESA Air data
are unbalanced time series, we first derived values that could be used as outcomes in PLS
regression. For each AQS, fixed, and NYCCAS reference site s, we regressed the time series of
observations C(s,f) on the smoothed time trends using ordinary least squares regression with
mean function E[C(s,0)] = 70 fo(?) + ...+ ym/fu(?) to get estimates (Pp,..., Pm) for each location.
For each time trend, PLS regression was performed separately with the ?f as the outcomes and
the matrix of geographic covariates as the predictors. This gave a set of PLS scores for each
location that was different for each time trend. PLS scores at home and snapshot monitoring sites
were predicted using the geographic variables at those locations and the score definitions defined
from the regression at fixed sites. PLS regression was performed using the pls package (Mevik et

al. 2011) in R 2.15.1 (R Core Team). Scores were included in the model as the Xi(s) in [3].

Parameter estimation and model selection

Once the PLS scores Xi(s) and time trends fi(f) were computed, the remaining parameters were
calculated via maximum likelihood using the SpatioTemporal package (Lindstrom et al. 2012) in
R. We varied several model parameters and used cross-validation to find the best-fitting model in
each metropolitan region, as described below. We considered different values for the number of
time trends (either 1 or 2), the df for smoothing time trends (either 4 or 8 per year), the number
of PLS scores per time trend (2 or 3), and the covariance structure of the f; fields (spatial

smoothing or no spatial smoothing).

Cross-validation procedure

The primary interest of MESA Air is in long-term average exposures, and so we assessed model

performance using cross-validation of long-term averages (LTAs). Because the highly

11



unbalanced structure of the monitoring data means that LTAs at home sites are computed from a
handful of observations of a few weeks’ duration, while LTAs at fixed sites are computed from
long time series, we performed cross-validation separately for each site type. For home sites and
NYCCAS distributed sites, we used ten-fold cross-validation, which leaves out one-tenth of the
data in turn. For AQS, fixed, and NYCCAS references sites we used leave-one-out cross-
validation since the total number of monitors was relatively small. For snapshot sites, we used
ten-fold cross-validation, with monitors in the same cluster left out together. For all three
schemes, the covariance parameters (but not the time trends or PLS scores) were re-estimated
using all but the left-out sites. Pollutant concentrations at the left-out sites were predicted using

the parameters estimated from the remaining data.

We assessed cross-validation performance using two measures: root mean-squared error (RMSE)
D 2 .
and cross-validation R* (denoted by Rcy). Letting y; denote the mean observed value and ; the

mean of the predicted values for the observed time points at monitoring site j, RMSE and R?;V

were computed on the original scale of the data according to the formulas

1 ~\2
RMSE = \/; X =95) [4]
Rey=max (0,1 — RMSEY/MSE, ), [5]

where MSE,»s = 1/n 2;1-:1 v —7)* is the mean-squared error of the observed values. RZCV provides a

. . . 2 .

measure of fit to the 1-1 line, in contrast to the typical regression-based R? (Rcyreg), Which

measures fit to the regression line and is computed as the square of the correlation coefficient
L . 2

between the cross-validation predictions and the observed values. R¢y reflects the contrast of

interest since our goal is accurate prediction at unmeasured locations, and it is typically lower

12
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than Rcyreq. Although Ry was the primary metric for our model evaluation, we present Rcy;eq for
comparison with published results from other authors. Because we are most interested in spatial

contrasts between individual exposures within each region, we prioritized home-site over fixed-

2 : .
site Rcy and RMSE in the model selection process.

In the context of the hierarchical model [1], it is challenging to separate the spatial and temporal

o 2 oy . .
contributions to Rcy for cross-validation of temporally sparse datasets like the home sites and

NYCCAS distributed sites. Lindstrom et al. (2013) proposed three temporally adjusted
adaptations of RZCV that use data from the AQS and fixed sites as the reference MSE instead of
MSE,ps in [5] in order to focus on spatial prediction accuracy. ijg uses the average values at
AQS and fixed sites within that region. RzClose uses the closest (in absolute distance) AQS or fixed

. 2 . .
site. Rsmoorn Uses the smoothed time trend at the closest AQS or fixed site.

Prediction at participant locations

Using the best models from each metropolitan region, predictions of pollutant log-concentrations
at participant residences were made on a two-week scale from January 1999 through March 2012.
We back-transformed these predictions using exponentiation to return them to the original scale
of concentration measurements and computed averages of two-week predictions over the study

period.

Results
Model structure

Table 3 provides an overview of the model structure selected for each metropolitan region and

pollutant. Most models have only one time trend, although all the New York models have two.
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The two smoothed trends for the NO, model in Los Angeles are shown in Figure 2. Figure 2 also

includes plots of the fitted trends for a selected AQS site and fixed site.

For PM,s, there was noticeable heterogeneity of the best models across metropolitan regions
(Table 3). New York and Winston-Salem had no spatial smoothing in the long-term PM,s
average (fo(s)) and no model had spatial smoothing in the PM, s time trend coefficients (Si(s)).
Half of the regions had two time trends, while the other half had only a single time trend for
PM, 5. For NO», all of the models had spatial smoothing for the long-term average, and the same

was true for NOx except in New York.

The relative contribution of geographic covariates to the PLS scores varied by region and
pollutant. Figure S1 in the Supplemental Material shows the correlations between covariates and
PLS scores for the NO, model in Chicago, which are representative of the general patterns in the
other regions (data not shown). Overall, the distance-to-feature covariates and vegetation
measures (Normalized Difference Vegetation Index [NDVI] and low development, open
development, forest and wetland land use) tended to have the opposite correlation from
emissions and traffic measures (Al, A2/A3, and truck route lengths and intersection counts)

within buffers.

Model results

Table 4 shows the cross-validation metrics for all models, broken down by pollutant and region.
These metrics assess how well the site means are modeled, incorporating both the spatial and
temporal components of the predictions. Scatterplots of predictions and observed values are

provided in Figure 3 for AQS and fixed sites and Figure S2 in the Supplemental Material for

14



home sites. Metrics for the snapshot sites (for NO, and NOx) and for AQS and fixed sites (all

four pollutants) on the two-week scale are reported in Supplemental Material, Tables S5 and S6.

Predictive accuracy was generally good (R2CV >0.6) to excellent (RZCV >0.8) in almost all regions
for each pollutant. NOx models in Baltimore and Los Angeles had the best performance at
MESA home sites (RZCV of 0.92 and 0.91, respectively) (Table 4). The lowest R2CV for home sites
was in the Chicago NO, model (0.45), but its RMSE (3.31 ppb) was comparable to that in New
York and Los Angeles (3.82 and 3.13 ppb, respectively). At AQS and fixed sites, RZCV was very
good (0.70 for LAC in Los Angeles) to excellent (0.98 for NOx in St. Paul), with two notable
exceptions: Winston-Salem NOx (0.00) and St. Paul PM; 5 (0.45). However, in both cases the
RMSE was comparable to the corresponding RMSE for models in other regions. The small range

of observed data (9.8 to 22.4 ppb) (Supplemental Material, Table S2) and the small number of

monitors in Winston-Salem (Table 1) explain the low R2CV for NOx in that city.

Table 5 provides three versions of temporally adjusted R2CV at home sites (Rf;vg, chlme, and Ré,m,mh).

For NO;, and NOx, these temporally adjusted R2CV are fairly similar to the unadjusted R?;V

reported in Table 4, suggesting that we are predicting spatial differences well. For PM;s,

however, the temporally adjusted RZCV are consistently lower than the unadjusted RZCV.

Boxplots of the long-term averages of predictions at participant residences are provided in Figure
4. On average, predicted concentrations tended to be higher in New York and Los Angeles,
consistent with the higher observed monitoring values in those regions. Variability in predictions

is also greatest in these two cities, especially in the tails of the distributions.
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Table S7 in the Supplemental Material provides performance metrics for the New York models

when the NYCCAS data were excluded from the modeling process. Without the NYCCAS data,

R2CV was noticeably lower for PM;5(0.79 versus 0.91 at AQS and fixed sites, and 0.36 versus

0.54 at home sites) and LAC (0.55 versus 0.75 at AQS and fixed sites, and 0.43 versus 0.51 at

home sites).

Discussion

We present here a complex and successful approach to predicting long-term air pollution
concentrations for application in a cohort study. While this approach was tailored to this
particular well-characterized cohort study—taking advantage of cohort-specific monitoring for
example—the success of the approach demonstrates modeling improvements that can be adopted
for application in future population-based research on spatially varying pollutants. We believe
that this approach to capturing variation in within-region pollution highlights advances that
should be adopted in the next generation of air pollution cohort studies, both for understanding
contrasts at relatively low concentrations in the U.S. and at the higher concentrations

experienced globally.

We describe a unified framework for implementing exposure prediction models of four air
pollutants in six metropolitan regions that easily incorporates spatially- and temporally
unbalanced monitoring data. The application of a consistent modeling framework to all regions
and pollutants is important for studies like MESA Air that use exposure estimates from multiple
sub-cohorts together in health analyses. Although we applied the same approach in all regions,

we varied the model structure to best fit the data for each region and pollutant. This unified

modeling approach was shown to have very good model performance (RZCV > 0.70) for almost all

16



of the pollutants and regions. The architecture for this modeling approach is publicly available

through the SpatioTemporal R package (Lindstrom et al. 2012).

As a result of the success of our spatiotemporal modeling approaches, we are confident in using
these approaches to model outdoor pollutant concentrations in epidemiological analyses in this
cohort and in other populations residing in these same communities. We have also found that
implementation of portions of this approach, such as PLS regression of a large set of geographic
covariates combined with spatial smoothing via universal kriging, can be used with good success
in other regions to predict pollutant concentrations without the same level of small-area
monitoring (Sampson et al. 2013). The NYCCAS data increased the spatial density of the
monitoring data in New York, which was likely one reason for the improved model performance
when the data were included. For LAC, the NYCCAS data provided particular benefit because
they allowed the model to be extended through 2010, which would not have been possible with

only the MESA Air data.

A majority of models included spatial smoothing in the long-term average. This suggests that
while PLS scores derived from geographic covariates can predict much of the spatial variation in

the data, benefit is gained from borrowing strength across observations nearby in space.

Differences in the underlying pollutant variability likely caused some of the differences seen in
temporally adjusted RZCV. PM, s tended to exhibit less small-scale spatial variation and greater

temporal variability, leading to temporally adjusted RZCV that are noticeably lower than the

unadjusted measures. The NO, and NOx data tended to exhibit greater spatial variability, and the

similarity of the unadjusted and temporally adjusted R?;V values suggest that the unadjusted RZCV

are not overly inflated by well-predicted temporal variation.
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The modeling approach presented here does have several limitations. First, we used geographic
covariates that were constant in time (although the modeling framework readily extends to
spatiotemporal covariates; see Lindstrom et al. (2013)). Changes in these variables likely
occurred during the study decade, but we nonetheless believe that the time-constant geographic
variables still provided a useful means to predict long-term pollutant concentrations. Secondly,
the calculation of PLS scores was limited to AQS and fixed sites because they had long time
series. For LAC in particular, this means that the scores were based on a very small number of
locations because the LAC model relied only on MESA Air data (plus NYCCAS data for New
York). Thirdly, the cross-validation model selection procedure conditioned on the time trends
and PLS scores. Overfitting may have occurred in the cross-validation of the AQS and fixed sites,
since the left-out observations were used to estimate the time trends and PLS scores. However,
since the home sites were not used in time trend estimation or in defining the PLS scores, any
overfitting was restricted to the AQS and fixed site cross-validation. This provides further
motivation for prioritization of cross-validation metrics from home sites when selecting the best

models.

Conclusions

Our unified spatiotemporal modeling method successfully characterized outdoor concentrations
of multiple air pollutants at the homes of cohort members in multiple metropolitan regions. This
flexible and powerful modeling approach can incorporate an unbalanced monitoring data
structure, leveraging data from supplemental monitoring campaigns that increase the spatial
coverage of monitoring data. The method was easily transferred between regions and pollutants,
allowing for straightforward comparison between model fits across regions. While aspects of our

techniques are particularly tailored to the unique data and resources of MESA Air, lessons
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learned here can be applied to understand the spatial and temporal variation of pollutants in
future cohort studies. Advances in fine-scale modeling resolved in both space and time are
important for the next generation of cohort studies assessing health effects of environmental

agents.
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Table 1. Number of monitors by site type, region, and pollutant.

Site type PM2_5 NOz NO)( LAC
Baltimore, MD

AQS 29 11 8

MESA Fixed 5 5 5 5
MESA Home 86 87 87 86
MESA Snapshot 104 104

Chicago, IL

AQS 20 7 6

MESA Fixed 6 6 6 6
MESA Home 136 113 113 136
MESA Snapshot 129 129

Los Angeles, CA

AQS 23 29 30

MESA Fixed 7 7 7 7
MESA Home 113 120 120 113
MESA Snapshot 252 250

New York, NY

AQS 45 17 11

MESA Fixed 3 3 3 3
MESA Home 107 119 118 107
MESA Snapshot 157 157

NYCCAS Reference 5 5 5 5
NYCCAS Distributed 150 150 150 150
St. Paul, MN

AQS 13 5 5

MESA Fixed 3 4 4 3
MESA Home 126 132 132 129
MESA Snapshot 107 107
Winston-Salem, NC

AQS 16 2 2

MESA Fixed 4 4 4 4
MESA Home 114 117 117 114

MESA Snapshot

121

121

23




Table 2. Summary of PM; s monitoring data.

Site type Number of observations Site means (ng/m?)
per site

Min Max Min Max Mean £ SD
Baltimore, MD
AQS 64 345 10.9 16.9 134+14
MESA Fixed 18 92 121 15.4 13.7+1.25
MESA Home 1 3 7.3 22.7 14.3 £ 3.1
Chicago, IL
AQS 71 320 11.7 16.4 14.0+£1.3
MESA Fixed 6 87 12.2 14.0 13.1+£0.75
MESA Home 1 4 5.2 19.5 11.5+3.2
Los Angeles, CA
AQS 82 345 10.7 22.8 16.2+3.5
MESA Fixed 76 85 13.7 19.3 16.2+2.0
MESA Home 1 2 0.7 42.6 16.9+ 6.1
New York, NY
AQS 51 342 9.3 17.1 125+1.8
MESA Fixed 49 83 11.5 15.7 13.7 £ 2.1
MESA Home 1 3 3.5 41.6 15.1+4.9
NYCCAS Reference 51 52 8.8 9.9 94+042
NYCCAS Distributed 6 8 6.8 19.8 11.0+11.0
St. Paul, MN
AQS 55 305 7.9 11.6 10.0 £ 0.91
MESA Fixed 81 89 9.6 10.5 10.0 £ 0.46
MESA Home 1 5 5.0 27.4 10.3+3.8
Winston-Salem, NC
AQS 86 346 10.3 15.9 13415
MESA Fixed 80 93 13.0 13.8 13.4+£0.35
MESA Home 1 4 9.0 22.8 143126
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Table 3. Model structure for the best model (selected by cross-validation) for each pollutant and

metropolitan region.

Model No. of time | No. of PLS | dflyear Spatial smoothing®
trends? SCOI’GSb in time Long-term Time trend
trend® average (Bo) | coefficients
(B1)
Baltimore, MD
PM2s 1 3 4 Yes No
NO, 1 2 8 Yes No
NOx 1 2 8 Yes Yes
LAC 1 3 8 No No
Chicago, IL
PM; s 1 3 8 Yes No
NO, 2 2 4 Yes Yes
NOx 2 2 8 Yes No
LAC 1 2 8 Yes Yes
Los Angeles, CA
PM, .5 2 3 8 Yes No
NO, 2 3 8 Yes Yes
NOx 1 3 4 Yes Yes
LAC 1 2 4 Yes No
New York, NY
PM2s 2 3 8 No No
NO, 2 3 4 Yes Yes
NOx 2 2 8 No No
LAC 2 2 4 Yes No
St. Paul, MN
PM2s 1 3 4 Yes No
NO, 1 3 4 Yes No
NOx 1 3 4 Yes No
LAC 1 2 8 Yes No
Winston-Salem, NC
PM; s 2 2 4 No No
NO, 1 3 8 Yes Yes
NOx 1 2 8 Yes Yes
LAC 1 2 8 Yes No

“Selected from either 1 or 2 time trends. "PLS, Partial Least Squares. Selected from either 2 or 3

PLS scores. Scores were covariates in the mean component of the long-term average () and

time trend (/3;) fields (denoted by X;(s) in [3]). “Selected from either 4 or 8 degrees of freedom

(df) per year. Controls smoothness of estimated time trends. “Yes, exponential covariance

structure. No, independent covariance structure.
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Table 4. Cross-validation measures of predictive accuracy for site means at monitoring locations.

Region AQS and MESA Fixed sites MESA Home sites
RMSE® Rev Revreg RMSE® Rev | Revreg
PM; s
Baltimore 0.42 0.90 0.90 1.24 0.84 0.86
Chicago 0.59 0.78 0.82 1.43 0.80 0.80
Los Angeles 1.28 0.83 0.84 2.92 0.77 0.78
New York® 0.59 0.91 0.91 2.80 0.54 0.56
St. Paul 0.60 0.45 0.84 1.78 0.78 0.79
Winston-Salem 0.44 0.89 0.90 1.00 0.85 0.86
NO,
Baltimore 0.76 0.96 0.97 1.47 0.90 0.90
Chicago 1.51 0.87 0.97 3.31 0.45 0.48
Los Angeles 2.23 0.88 0.89 3.13 0.77 0.78
New York® 1.86 0.92 0.93 3.82 0.78 0.78
St. Paul 1.27 0.93 0.94 1.24 0.87 0.87
Winston-Salem 0.95 0.85 0.98 1.41 0.74 0.75
NOy
Baltimore 3.32 0.92 0.96 3.98 0.92 0.92
Chicago 3.88 0.87 0.91 6.08 0.59 0.59
Los Angeles 6.74 0.87 0.87 5.69 0.91 0.92
New York® 8.85 0.61 0.89 16.66 0.50 0.50
St. Paul 1.69 0.98 0.98 3.58 0.83 0.84
Winston-Salem 5.46 0.00 0.94 3.74 0.60 0.63
LAC
Baltimore 0.096 0.87 0.91 0.127 0.78 0.79
Chicago 0.045 0.86 0.92 0.108 0.61 0.62
Los Angeles 0.114 0.70 0.93 0.266 0.69 0.71
New York® 0.147 0.75 0.79 0.329 0.51 0.52
St. Paul 0.043 0.91 0.92 0.074 0.69 0.69
Winston-Salem 0.020 0.94 0.99 0.088 0.64 0.65

“Units for RMSE are ug/m® (PM,.s5), ppb (NO, and NOx), and 10~°/m (LAC). "New York models
include NYCCAS reference sites with AQS and Fixed sites, and NYCCAS distributed sites with

Home sites.
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Table 5. Temporally adjusted cross-validation measures of predictive accuracy for home site

means.
Region R;24Vg Rf?lose RZSmooth
PM_ s

Baltimore 0.45 0.52 0.72
Chicago 0.23 0.33 0.64
Los Angeles 0.40 0.23 0.43
New York® 0.48 0.36 0.38
St. Paul 0.23 0.29 0.62
Winston-Salem 0.29 0.60 0.77
NO,

Baltimore 0.92 0.79 0.74
Chicago 0.73 0.64 0.78
Los Angeles 0.63 0.66 0.66
New York® 0.89 0.78 0.64
St. Paul 0.77 0.89 0.90
Winston-Salem 0.73 0.79 0.81
NOy

Baltimore 0.86 0.70 0.65
Chicago 0.76 0.73 0.69
Los Angeles 0.81 0.85 0.88
New York® 0.72 0.64 0.52
St. Paul 0.79 0.88 0.85
Winston-Salem 0.43 0.62 0.64
LAC

Baltimore 0.78 0.67 0.32
Chicago 0.56 0.45 0.36
Los Angeles 0.28 0.34 0.48
New York® 0.59 0.65 0.53
St. Paul 0.67 0.80 0.84
Winston-Salem 0.37 0.56 0.59

General formula for R measures is R~ = max(0,1 — RMSE?/MSE ). Rivg uses the mean-squared
error of the average observed values at AQS and Fixed sites within the region as MSEgps. chl{,se
uses the mean-squared error of the observed values at the closest AQS or Fixed site as MSEps.
R?qm(,mh uses the mean squared error of the values of the smoothed time trend at the nearest AQS
or Fixed site as MSEps.

“Includes NYCCAS distributed sites.
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Figure 1. Maps of the modeling areas (denoted by dashed black line) in the six metropolitan
regions, including monitor and subject locations. Abbreviations: Fixed, MESA Air Fixed
monitoring sites; Home, MESA Air Home monitoring sites; Snapshot, MESA Air Snapshot
monitoring sites; Participant, MESA Air participant residence location (moved slightly to protect

confidentiality).

Figure 2. Time trends for the NO, model in Los Angeles. The top panel shows the smooth time
trends calculated from AQS and Fixed sites. The middle and bottom panels show the observed

data and fitted trends at an AQS site and Fixed site, respectively.

Figure 3. Long-term averages of cross-validated predictions and observations for AQS and fixed

monitoring locations for each pollutant.

Figure 4. Pollutant- and region-specific boxplots of long-term averages of predictions from 1999
through early 2012 at participant residence locations. Metropolitan region abbreviations: Bal,
Baltimore; Chi, Chicago; LA, Los Angeles; NY, New York; SP, St. Paul; W-S, Winston-Salem.
Boxes extend from the 25™ to the 75" percentile, horizontal bars represent the median, whisker
extend 1.5 times the length of the interquartile range (IQR) above and below the 75™ and 25™

percentiles, respectively, and outliers are presented as points.
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Figure 2.
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Figure 3.
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Figure 4.
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