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Abstract  

Background: Heat-wave and health warning systems (HHWSs) are activated based on forecasts 

of health-threatening hot weather. 

Objective: We estimated heat-mortality associations based on forecast and observed weather 

data in Detroit, Michigan, USA, and compared the accuracy of forecast products for predicting 

heat waves. 

Methods: We derived and compared apparent temperature (AT) and heat wave days (with heat 

waves defined as ≥ 2 days of daily mean AT > 95th percentile of warm-season average) from 

weather observations and six different forecast products. We used Poisson regression with and 

without adjustment for O3 and/or PM10 to estimate and compare associations of daily all-cause 

mortality with observed and predicted AT and heat wave days. 

Results: One-day-ahead forecast of a local operational product, Revised Digital Forecast (RDF) 

had about half the number of false positives than all other forecasts. On average, controlling for 

heat waves, days with observed AT = 25.3ºC were associated with 3.5% higher mortality (95% 

CI: -1.6, 8.8%) than days with AT = 8.5ºC. Observed heat wave days were associated with 6.2% 

higher mortality (95% CI: -0.4, 13.2%) than non–heat wave days. The accuracy of predictions 

varied, but associations between mortality and forecast heat generally tended to overestimate 

heat effects, while associations with forecast heat waves tended to underestimate heat wave 

effects, relative to associations based on observed weather metrics. 
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Conclusions:  Our findings  suggest  that  incorporating knowledge  of  local  conditions  may 

improve the accuracy of predictions used to activate heat wave and health warning systems.  
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Introduction  

Heat waves have been linked to increased risk of mortality, hospital admissions, heat stroke, heat 

exhaustion, and cardiovascular and respiratory diseases (Anderson and Bell 2009; Gasparrini and 

Armstrong 2011; Kovats and Ebi 2006; Kovats and Hajat 2007). Heat-wave and health warning 

systems (HHWSs) are preparedness plans designed to reduce heat-related adverse health effects, 

and can help raise awareness among populations vulnerable to extreme heat. HHWSs have been 

established to issue heat advisories to the public based on weather forecast data in many cities in 

the U.S. and elsewhere (Kovats 2006). Several triggers for HHWS algorithms have been 

proposed and implemented, as reviewed by Zhang et al. (2012), including absolute or relative 

temperature thresholds, the heat index, physiologically based discomfort classifications, 

temperature–mortality relationships derived from epidemiologic analysis, and spatial synoptic 

classification. The latter two methods utilize local heat-mortality associations derived from 

observed death counts and historical weather observations, and then predict mortality risks for 

the next few days by linking these developed heat-mortality associations with weather forecasts. 

These analyses treat weather forecasts exactly the same as weather measurements when they 

used forecasts to issue heat alerts. Recently, Henderson and Kosatsky (2013) defined four days 

during 2005 - 2009 as heat health emergencies, first by examining the coincidence of extreme 

temperature days and extreme mortality days using archived data from a coastal airport and an 

inland airport in Vancouver Metro area, Canada, and then by evaluating the predictive ability of 

heat alerts based on forecast data with different lead times. Henderson and Kosatsky (2013) 
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found that  the  accuracy of  heat  alerts  predicted by  forecasted temperatures  varied with lead time  

and geographical areas  compared to those predicted by observed temperatures.   

We  know  that  forecast  data  vary in quality for different  weather parameters, e.g., temperature  

usually has  a  more  accurate  forecast  than dew  point  temperature  (DPT)  (Werth and Garrett  

2011). Werth and Garrrett  compared one  year  of  predictions  from  the  Global  Forecast  System  

(GFS)  (a  global  numerical  forecast  model  system;  see  its  details  in the  method section)  to nearly 

12, 000 ground stations, and reported that  typical  root  mean square  errors  (RMSE) were  3ºC for 

air temperature and 3.5ºC for DPT.  

This  is  an important  question for the  design of  HHWS  since  use  of  the  forecast  parameters  with 

performance  most  comparable  to the  observed weather in association with mortality to trigger 

public health interventions  would be preferred.   

This  study aims  to investigate  how  well  forecast  models  reproduce  heat  waves  seen in the  

observations  from  Detroit  using one  definition of  heat  wave  and the  impacts  of  weather forecast  

quality on heat-mortality associations. Previous  studies  on heat-mortality associations  in Detroit  

have  reported that  hot  weather is  significantly associated with excess  mortality in this  city, and 

heat  has  a  disproportionate  burden on those  with diabetes, less  educated people, and among 

Blacks, a  disparity that  could be  explained in part  by unequal  access  to home  air conditioning 

(O’Neill et al., 2003, 2005; Schwartz, 2005).   
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To inform  our analysis, we  followed the  suggestion of  Gasparrini  and Armstrong (Gasparrini  and 

Armstrong 2011)  to classify estimated effects  of  temperature  on mortality into two parts:  the  

‘main effect’ defined as  the  estimated independent  effect  attributed to daily temperature, and the  

estimated heat-wave  effect associated with  heat  waves  lasting for ≥  2 days  (Gasparrini  and 

Armstrong 2011). We refer to the  ‘main effect’ and ‘heat-wave  effect’  as ‘heat’  and ‘heat-wave’  

effects  (or associations)  in this  paper. We applied generalized additive  models  to multiple  time  

series  of  daily all-cause  mortality  counts  and weather observations  or archived weather forecasts  

from  six weather forecast  products  in Detroit, MI. We  then  assessed how  consistent  associations  

between mortality and predicted  heat  and heat  waves  were  with estimated effects  of  observed 

heat and heat waves based on the same models.  

Methods  

Data sources  

 Mortality data 

We obtained daily all-cause mortality data from the Detroit Metropolitan area (Wayne, Oakland, 

and Macomb Counties) in the warm season (May 1st to September 30th) from 2002 to 2006. 

Original death records were obtained from National Center for Health Statistics (NCHS) and 

aggregated into daily counts. The International Classification of Disease (ICD) Tenth revision 

(ICD-10) was used to classify causes of death for the study period (World Health Organization, 

1992). Daily total mortality excluded deaths from external causes (ICD-10 codes beginning with 

S through Z, which include injuries, poisonings, traffic accidents, among others). 
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Hourly weather observations at the Detroit Metropolitan Airport monitoring station (Station 

name: Detroit/Metropolitan) were obtained from the National Climate Data Center (NCDC, 

2010) in the study period. We then calculated maximum and minimum temperatures, dew point 

temperature, and apparent temperatures (AT) for each day in the time period, and averaged the 

maximum and minimum ATs on each day to derive a daily average AT measure. ATs were 

derived using the standard formula previously reported (Zanobetti and Schwartz 2008). 

We chose to use AT in this study because AT includes temperature and humidity information in 

a way similar to the heat index and it is more easily applied than the heat index, which is limited 

to application above 26.7ºC and relative humidity thresholds (40%). 

 Forecast weather data 

Weather forecast products are generated by post-processing forecast output from several 

numerical weather prediction models using statistical approaches or local meteorologists’ 

judgments. 

Model Output Statistics (MOS) products are generated by the National Weather Service’s 

(NWS) Meteorological Development Lab (NWS, 2011). MOS products are ‘operational 

products’, that is, data sets used by forecasters in local NWS offices in the decision-making 

process to provide real-time weather forecasts. The MOS products are calibrated forecast outputs 

to bridge the gap between the original outputs of numerical forecast models and the observations 

in the NWS monitoring network (NWS, 2011). This calibration is usually implemented by 
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building multiple  linear regression models, which are  based on historical  weather observations  

and forecast  outputs. Thus, the  MOS  products  provide  forecasts  of  weather variables  by 

combining physically based numerical  models  and statistical  models. MOS  is  also used to 

downscale  weather predictions  at  a  grid to local  stations. Three  major types  of  MOS  products  

exist:  the  Global  Forecast  System  (GFS), the  Nested Grid Model  (NGM), and North American 

Mesoscale  model  (NAM, formerly the  Eta  model). GFS  is  a  global  numerical  forecast  model  

system  operated by the  National  Centers  for Environmental  Prediction (NCEP) of  the  National  

Oceanic  and Atmospheric  Administration (NOAA) (NCEP, 2011). It  produces  forecasts  every 

six hours  at  horizontal  grid lengths  ranging from  35 km  to 70 km. NGM  is  a  numerical  model  

run by NCEP, and produces  forecasts  twice  per day. It  uses  an 80 km  resolution grid over North 

America  and a  160 km  resolution grid over the  oceans. NGM  forecasts  are  no longer produced. 

NAM  is  a  regional  numerical  weather prediction model, and generates  forecasts  every six hours  

per day at 12 km resolution.   

The  Revised Digital  Forecast  (RDF)  data  are  an operational  forecast  product  produced by local  

meteorologists  at  the  NWS  Detroit/Pontiac  Office  according to the  outputs  of  numerical  weather 

models  and MOS  models, their judgments, as  well  as  other information such as  weather 

soundings  (Pollman, R, personal  communication, March 3, 2011). Local  meteorologists  usually 

make  a  decision in issuing a  heat  alert  by considering many factors  including predictions  from  

numerical  forecast  models, MOS  products  and  other forecast  products,  their local  knowledge  and 

others (Pollman, R, personal communication, March 3, 2011). 
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Six different  weather forecast  products  were  obtained for the  2002-2006 study period. We  first  

obtained five  MOS  products  to represent  these  three  model  types  and short-range/long-range  

forecasts, namely:  GFS-based short-range  MOS  forecast  product  (MAV:  6 to 72 hours  in 

advance  for most  weather parameters), GFS-based extended-range  MOS  forecast  product  (MEX: 

extended-range, 24 and  192 hours) and GFS-based ensemble  MOS  forecast  product  (ENS), 

NGM-based MOS  forecast  product  (FWC), and NAM-based MOS  forecast  product  (MET). 

Additionally, we  had access  to the  RDF  product  and extracted one  archived local  forecast  dataset  

(Station name:  KDTX, Detroit/White  Lake, MI) from  RDF  retained by the  NCDC (NCDC, 

2011). Forecast  products  include  forecasts  of  three  durations:  1-day forecasts, 2-day forecasts, 

and 3-day forecasts. Thus, we  had 18 predictions  on a  given day (predictions  of  3 different  

durations multiplied by 6 forecast products).  

 Air pollution data 

Increases in daily air pollution concentrations have been associated with increases in mortality, 

and air pollution levels often co-vary with weather conditions. Therefore, we wanted to include 

air pollution concentrations in the models. Daily concentrations of ozone and particulate matter 

with aerodynamic diameter less than 10 microns (PM10) were obtained from the U.S. 

Environmental Protection Agency’s Aerometric Information Retrieval System (AIRS) 

monitoring network. Because the number and location of operating monitors can vary from day 

to day, daily mean concentrations in the Detroit Metropolitan area were derived employing an 
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algorithm  previously used in air pollution epidemiological  studies (Schwartz  and Zanobetti  

2000).  

 Preparation of the combined dataset for analysis   

We merged mortality data, weather observations, forecasts, and air pollution data by date. For 

both observed and forecast data, we defined a heat-wave indicator as periods of 2 or more 

consecutive days with daily mean AT above the 95th percentile of the observed or predicted 

summertime distribution (May 1st to September 30th) determined separately for each year. 

We used SAS (version 9.2, SAS Institute Inc., Cary, NC, USA) to extract daily data from 

forecasts and observations, calculated biases (predictions minus observed values) on a daily basis 

and summarized biases using average root mean squared errors. . We also visualized the 

summary data using IBM SPSS Statistics 20.0 (IBM Corporation, Chicago, IL). 

Approach  

We quantified forecast product performance in identifying heat waves by calculating ‘false 

positive’ and ‘false negative’ days. False positive days were days when a forecast product 

predicted a heat wave day that did not occur (based on the observed data). False negative days 

were days when a forecast product failed to predict a heat wave day that did occur. 

We employed generalized additive models (GAM) to model mortality counts as a function of the 

continuous AT metrics and indicator variables representing heat waves. This was done across 

weather observations and forecasts in the warm-season (May 1st to September 30th) study period. 
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GAM  models  are  commonly used  in air quality, air pollution/heat  epidemiology studies  where  

seasonal  patterns  in outcome  variables, such as  mortality, and nonlinear associations  between 

health outcomes  and, say, temperature, require  additional  modeling flexibility  (Schwartz  and 

Zanobetti  2000). GAM  has  the  ability to characterize  non-linear relationships  between an  

independent  variable  and a  dependent  variable  using  parametric  and non-parametric  smoothing 

functions (Hastie and Tibshirani, 1990).   

Separate  GAMs  were  fit  to estimate  associations  between daily mortality counts  (the  outcome  

variable)  and daily average  AT  metrics  derived from  weather observations  and from  the  different  

forecast  products  with three  lag periods.  We simultaneously included daily AT  (as  a  continuous  

variable) to estimate  the  effect  of  heat, and an indicator variable  for heat  wave  days  (HWt  = 1 if  

day t  was  classified as  part  of  a  heat  wave, 0 otherwise)  to estimate  the  effect  of  heat  waves.  We 

assumed daily death counts follow   ed  an overdispersed Poisson distribution and modeled them     as:  

Log [E(Yt)]= α+ β  DOWt  + γYEARt  + S(ATt,t-1) + S(Tt) + ηHWt,   [1]  

where  E(Yt)  is  the  expected daily mortality count  on  day t;  α  is  the  intercept;  DOWt  is  a  set  of  

indicator  variables  for day of  the  week, and β  is  a  vector of  coefficients;  YEARt  represents  a  set  

of  indicator variables  indicating calendar year  to account  for inter-annual  variability  , 

respectively), and γ  is a vector of  coefficients;  ATt, t-1  is  the average of  the daily mean AT  on  day 

t  and on the  previous  day [continuous, modeled as  a  spline  function (S) with degrees  of  freedom  

(df)  = 6]. Note  that  we  created several  time  series  of  AT  for any combination of  a  forecast  
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product and a lag period, e.g., the time series of AT based on one-day-ahead RDF consist of all 

ATs based on the RDF forecasts produced one day in advance; Tt represents day of year (T = 1, 

2… 365, spline function with df = 5) to account for seasonality; and η is the coefficient for the 

heat wave indicator variables. GAM models were fit using the “mgcv” R package (version 1.7-6) 

(Wood, 2008) in the R statistical software (R Development Core Team; http://R-project.org). 

The parameters specifying the distribution of death counts were assigned by quasi-Poisson 

distributions to account overdispersion. 

We modeled AT – mortality associations and summarized heat effects by estimating the 

percentage difference in mortality associated with a given AT change. To facilitate comparisons 

across observations and forecasts, we used the GAM models described above to estimate the 

percentage difference in mortality on days with observed or predicted daily mean AT averaged 

over the same day and the previous day (ATlag01) of 25.3ºC compared with 8.5 ºC for all datasets 

(observed and forecast). These temperature references represent the 90th and 50th percentiles of 

the observed daily mean AT distributions during 2002 – 2006, and are consistent with percentiles 

used by Anderson and Bell (2009). We considered a p value less than 0.05 to be statistically 

significant. 

We conducted sensitivity analyses to examine whether estimated heat and heat wave effects 

differed when adjusted for ozone (on the same day), PM10 (on the previous day), or ozone and 

PM10 concentrations. We modeled both air pollutants using splines with 4 degrees of freedom, 
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and selected the  lag periods  previously reported to  have  the  strongest  associations  with mortality 

(Anderson and Bell 2010).  

Results  

Descriptive statistics   

Table 1 shows the root mean square errors (RMSEs) of daily average temperature, DPT, and AT 

metrics for each forecast product relative to the observed values. In general, for all products 

except MEX and ENS, RMSEs for all three weather parameters were lowest for predictions 

based on one-day forecasts, and highest for predictions based on three-day forecasts. The MAV 

forecast product produced the most accurate temperature and DPT predictions for all three 

forecast lengths, with three-day predictions that were >0.5ºC closer to the observed values than 

predictions based on the other forecast products. The most accurate AT predictions were based 

on one-day forecasts for RDF (a local NWS operational forecast product), two-day forecasts for 

MET, and three-day forecasts for MAV. Not surprisingly, AT has the largest biases, followed by 

DPT, and temperature in general. We excluded the MEX and ENS products from further analysis 

because they had larger errors in one-day forecasts compared with two- and three-day forecasts. 

This suggests some error characteristics in those two systems because forecasts typically have 

smaller errors with shorter lead time to issue forecasts. These systems were thus not appropriate 

for this application which focuses on typical forecasts. 

Table 2 compares numbers of heat wave days predicted by each forecast with the numbers of 

observed heat wave days, with heat waves defined as ≥ 2 consecutive days with daily mean AT 
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greater than the 95th percentile. (Note that the number of heat-wave alerts or warnings that were 

issued by local NWS office during the study period differs from the number of heat wave days 

defined according to the criteria above.) The number of predicted heat wave days varied from 11 

days (based on the three-day RDF forecast) to 22 days (based on one- and two-day FWC 

forecasts, and on the two-day RDF forecast). For one-day forecasts, which are more likely to be 

used to trigger a warning, all forecast products except RDF predicted more heat wave days than 

were observed. Patterns for two- and three-day forecasts were inconsistent. Most notably, 

two-day RDF forecasts substantially over-predicted heat wave days (22 days compared with 14 

observed during the study period), while three-day RDF forecasts under predicted heat wave 

days (11 days). Among all forecasts, one-day RDF and three-day MAV forecasts predicted the 

fewest false positive heat wave days (5 days), compared with up to 13 false positive days for 

other forecasts. Numbers of false negative forecasts ranged from 2 (for the two-day MAV 

forecast) to 11 days (for the three-day RDF), with similar numbers (4 to 6 days) for all products 

based on one-day forecasts. One-day forecasts correctly identified 8 to 10 of the 14 observed 

heat wave days during the study period. 

Heat effects  

The observations and most of the forecasts generated statistically non-significant excess relative 

risk estimates. The estimated percent increase in mortality associated with ATlag01 = 25.3ºC 

versus 8.5 ºC was 3.5% (95% CI: -1.6, 8.8%) (Figure 1A). Associations between mortality and 

observed ATlag01, and most of the associations with predicted ATlag01, were positive but not 
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statistically significant.  Estimated associations  with predicted ATlag01  varied among  forecast  

products  and time  frames, with most  overestimating  the  excess  relative  risk due  to heat  effects  

compared with associations  based on  observed ATlag01. For example, the  estimated percent  

change  in mortality based on ATlag01  predicted based on two- and three-day  RDF  forecasts  was 

4.0% (95% CI:  -1.8,  10.2%)  and  4.3% (95% CI:  -2.1, 11.1%), respectively, whereas  the  estimate  

based on ATlag01  predicted  from  the  one-day MAV  forecast  was 6.2% (95% CI:  0.4,  12.5%). 

Interestingly, estimated increases  in mortality associated with predicted ATlag01  based on two- 

and three-day  RDF  forecasts  (produced by the  local  NWS  office) were  closer  to associations  

with observed ATlag01  than associations  with predicted ATlag01  based on  other forecasts. Based on 

the  width of  the  confidence  intervals, relative  risk estimates  based on forecast  ATlag01  were  less  

precise than estimates based on observed ATlag01.  

In general, patterns of estimated changes in mortality associated with observed or predicted 

ATlag01 = 25.3ºC versus 8.5ºC were similar after adjustment for ambient air pollution (Figure 

1B-D). However, associations decreased in magnitude when adjusted for O3 only, PM10 only, or 

both pollutants, and all point estimates became statistically non-significant. 

Heat-wave effects   

Associations between mortality and heat wave days versus non–heat wave days were statistically 

significant only for heat wave days predicted based on one-day FWC forecasts (6.0%, 95% CI: 

0.1, 12.2%) (Figure 2A). Associations with heat wave days classified based on observed AT 

were stronger (6.2% increase in mortality; 95% CI: -0.4, 13.2%) than associations with heat 
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wave  days  predicted  from  forecasts,  except  for heat  wave  days  predicted by the  three-day RDF  

forecast  (6.6%, 95%  CI:  -1.0,  14.8%). Among all  forecasts, associations  with  heat  wave  days 

predicted by the  one-day FWC  forecast  and the  three-day RDF  forecast  were  the  closest  to the  

association  with observed weather. In contrast  to the  heat  effects  discussed earlier, the  

uncertainty ranges  (shown by width of  confidence  intervals)  of  the  excess  relative  risk derived 

from  all  forecasts  except  for one-day-ahead and three-day-ahead RDF  forecasts  were  smaller 

than those  from  the  observations.  Adjusting for O3, PM10  or both had little  influence  on 

associations between heat wave days and mortality (Figure 2B-D).  

Discussion  

This study addresses an epidemiologic question with potentially significant implications for the 

design of HHWS and projection of future mortality risks attributable to heat and heat waves by 

conducting a case study in Detroit. This question is: How does the performance of weather 

forecasts affect heat/heat-wave-mortality associations and the likelihood of triggering an alert? 

Previous work has not examined this question systematically, which is an important omission 

given the increased trend of temperature and the growing frequency and severity of heat waves 

in a warm climate. 

We explored six weather forecast products for Detroit derived from different algorithms that 

post-process outputs from several numerical forecast models. Two of these, MEX and ENS, had 

error characteristics that suggested that they should not be used. We compared estimated 

associations of mortality with heat and heat wave days predicted using the four remaining 
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forecast  products  to  associations  between mortality and observed heat  and heat  wave  days. Our 

results  suggest  that, although the  local  operational  forecast  (RDF)  was not  always  the  most  

accurate  in terms  of  biases  compared to weather  observations, it  generally produced the  estimates  

of  heat  and heat-wave  effects  closer to associations  with  observed data  than  other forecast  

products. In addition, it  produced far fewer false  positive  calls,  and similar numbers  of  false  

negative  calls,  for heat  waves.  The  estimated heat  and heat-waves  effects  varied with  the  forecast  

product  and issuing timeframe.  The  choice  of  forecast  product  could play a  critical  role  in 

operating a HHWS more effectively.   

Among the  calculated weather metrics, AT was  predicted with the  largest  bias, regardless  of  the  

forecast  product  used, followed by DPT  and temperature. Not  surprisingly, the  accuracy in 

forecasting DPT  was  lower than  that  for temperature. Temperature  is  the  more  robustly forecast  

and spatially representative  observation, and DPT  is  commonly thought  to be  more  difficult  to 

predict  compared to temperature  because  it  is  largely affected by local  land features, e.g., lakes  

and rivers.  AT is  calculated from  two directly forecasted variables  (temperature  and DPT), and 

thus  results  in larger errors  than both temperature  and DPT. MEX  and ENS  had larger bias  in 

temperature  for one-day-ahead forecast  than two- and three-day-ahead forecasts, possibly 

because  large  initialization errors  in the  forecasting systems  were  not  largely reduced at  the  

one-day time span.   

The  one-day RDF  forecast  predicted the  fewest  false  positive  heat  wave  days  and an intermediate  

number of  false  negative  heat  wave  days  compared to the  other products.  Although one-day 
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FWC and MET  forecasts  correctly predicted  two more  heat  wave  days  than RDF, these  products  

also predicted  6 or 7 more  false  positive  heat  wave  days. This  finding suggests  that  the  one-day  

RDF  forecast  is  an overall  better product  than others  in order to issue  heat  alerts  because  the  

number of  ‘wrong’  alerts  would be  largely reduced  when observed weather does  not  meet  the  

heat  alert  criteria.  This  has  important  implications  in risk communication because  people  do not  

trust  heat  warning systems  if  a  system  issues  too many alerts.  In addition, one-day RDF  forecast  

had 8 correctly identified heat  wave  days compared to the  observations  which were  similar to 8 

to 10 days  correctly  predicted from  other forecast  products.  This  suggests  the  RDF  reduced the  

number of  false  positive  days  with the  cost  of  only a  relatively lower number of  correctly 

identified days.  Although  two- and three-day MAV  forecasts  predicted fewer  false  negative  heat  

wave  days  and correctly predicted more  true  positive  heat  wave  days  than  all other forecast  

products, local  meteorologists  pay more  attention to  one-day-ahead forecast  and use  all MOS 

products  as  well  as  other forecast  products  in their decision-making process  on issuing a  heat  

alert.  Finally, this  comparison across  forecasts  and weather  observations  highlighted the  

challenge  in predicting weather extremes  because  all  forecast  models  and post-processing 

adjustments  are  designed for estimating the  averages  of  temperature  and other weather 

conditions (Lalaurette, 2003).   

Minor to significant  differences  of the  estimated heat effects  between forecasts  and observations  

were observed across forecast product and time frame. Most of the forecast products 

overestimated associations between heat and mortality when compared with associations based 

19
 



  

on  observed heat. The  forecasts  with the  smallest  biases  may not  necessarily result  in the  closest  

estimates  of  heat  effects  to those  derived from  the  observations, and one-day-ahead forecasts  did 

not  always  result  in estimated heat  effects  closer to those  from  observations  than 

two/three-day-ahead forecasts,  suggesting more  information (e.g., bias  propagation in forecast  

systems) is needed to better understand these relationships.  

Compared to heat  effects, associations  between predicted heat  wave  days  and mortality were  

smaller than associations  with observed heat  wave  days  and mortality. Forecast-mortality models  

captured heat-wave  effects less  well  than  heat  effects  because  forecast  models  perform  worse  in 

predicting extreme  weather conditions. This  suggests  that  we  would expect  more  uncertainties  in 

heat-wave  alerts  issued by HHWSs  compared to heat  advisories. Heat-wave  alerts  are  more  

severe  than heat  advisories. In addition, although the  forecasts  made  one  day in advance  are  

expected to be  closer to the  observations  than other forecasts, their estimated associations  with 

heat  waves  were  not  closer to the  associations  with the  DTW  observations  than those  estimates 

from  other forecast  periods,  possibly  because  of  the  error propagation reason mentioned earlier.  

Overall, the  comparison of  heat/heat-wave-effects  between observations  and forecast  

demonstrated the importance of choice of   weather forecast product in designing a HHWS.   

Heat  effects  derived from  both observations  and forecasts  were  attenuated when models  included 

O3, or PM10  or both,  whereas  estimated heat-waves  effects from  forecasts  and observations  were  

similar.  A  recent  national  heat  effects  analysis  in 107 U.S. communities  reported that  

associations  between heat  and mortality  slightly  decreased with pollution adjustment  in 
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temperature-mortality models  (daily mean temperature) (Anderson and Bell  2009). Unlike  

Anderson and Bell,  we  estimated heat  effects  while  controlling for heat  waves  in the  same  

models.  We  acknowledge that,  because of   the  lack of  consensus  on how  to represent the   joint and  

synergistic  effects  of  heat/heat-wave  and air pollution on health, and practical  challenges  related 

to issuing alerts  or warnings  that  take  both heat  wave  and pollution into account, the  practical  

application of the results adjusting for pollutants is currently limited.  

The  comparative  analysis  of  weather forecasts  presented in this  study points  out  the  challenge  in 

issuing heat  alerts  purely based on numerical  or statistical  forecast  models  given that  forecast  

quality varies  with products  and time. Heat  alerts  can activate  public  health interventions  and 

decisions  on issuing them  can depend  not  only on forecasts  but  on NWS  officials’ awareness  of  

place-specific  conditions  (for example, holidays, parades, fairs, major conferences  in the  area, 

health status  of  resident  populations, and perhaps  air quality forecasts  in future). Thus,  local  

knowledge  in both weather and population health, and cooperation among the  meteorological, 

health, and social  service  sectors, not  just  forecasted conditions,  are  critical  input  in issuing  heat  

warnings and alerts.   

This  study has  a  few  limitations. First, our findings  may be  not  generalizable  to other cities,  and 

further evaluation with data  from  more  cities  is  needed.  Second, some  parameter specifications  

in our data  analysis  are  subjective  primarily because  no consensus  exists  on the  definition of  heat  

waves  and quantification of  heat  effects, e.g., percentile-based heat  wave  definitions  in summer 

months  are  different  from  the  heat  index used by NWS  and may not  capture  all  heat  wave  days. 
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Duration was  not  considered in the  analysis  due  to the  small  number of  heat  waves  in the  study 

period.  Third, further work is  needed to translate  our findings  into forecasters’ practice  to support  

their decision-making and potentially improved triggers  of  heat  alerts  because  this  is  beyond the  

scope  of  this  paper. Local  forecasters  make  forecasts  and heat  alerts  based on multiple  forecast  

products  as  well  as  their judgment  based on their local  knowledge  of  historical  weather and other 

factors  mentioned above. Fourth, our findings  on the  impact  of  forecasts  on heat-mortality 

associations  are  based on long time  series  of  forecasted weather conditions, on average. In 

practice, forecasters  look at  forecasts  a  few  days  in advance  and weather observations  in just  the  

previous  days, so additional  analyses, beyond the  scope  of  this  paper, would be  required to 

evaluate  the  application of  forecast  data  as  heat  alert  triggers. One  obstacle  to this  type  of  

analysis  is  the  difficulty in acquiring clean and reliable  historical  datasets  showing which days  

were  declared heat  alerts  or heat  advisories  by the  NWS;  our team  attempted to extract  such 

information from  NWS  archived warnings, watches  and advisories  but  we  were  stymied by the  

lack  of  uniformity in these  documents. We  believe  that  the  development  of  improved heat  alert  

triggers  should account  for forecast  quality as  well  as  many factors  discussed above;  choosing 

potentially improved triggers  is  a  challenge  because  of  the  lack of  consensus  on the  evaluation 

criteria  as  well  as  the  definitions  of  heat  wave  days. Potential  criteria  include  which health 

outcomes  to use  as  the  ‘sentinel  events’ (e.g., mortality, hospital  admissions  and emergency 

department  visits), robustness, false  negative  and false  positive  rates, effective  communication 

about  heat  alerts  to the  public  and perhaps  economic  benefit-cost  analysis.  A  final  limitation of  

our analysis  was  that  we  were  using a  mortality dataset  from  which external  causes  had been 
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previously excluded, thus impairing our ability to examine causes of death such as overdoses and 

intentional self harm that may plausibly be linked to extremely hot weather. Future analyses 

could address cause of death questions. 

Conclusions  

Examining the impacts of weather forecasts on heat/heat-wave-mortality associations and the 

performance of various forecast products in predicting heat waves is important for designing 

HHWSs and improving projection of heat-related health risks. Our analysis demonstrates the 

challenge in predicting health effects of weather extremes based on numerical and statistical 

forecast models. Forecasts showed higher associations between continuous heat- and mortality, 

and lower associations between heat wave and mortality, than observed weather. The impacts of 

weather forecast quality on mortality risk depended on forecast product and forecast timeframe. 

Heat and heat wave effects derived from a local operational forecast product were generally 

closer to those calculated based on observations than other forecast products. Our findings 

provide insights into issuing heat alerts and suggest that local knowledge on weather and 

population health are critical factors in HHWSs. 
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Table 1. Daily mean biases (average root mean squared errors) for forecasted temperature (TMP), dew point temperature (DPT), and apparent 

temperature (AT) relative to observed values. 

Forecast product 1-day TMP 1-day DPT 1-day AT 2-day TMP 2-day DPT 2-day AT 3-day TMP 3-day DPT 3-day AT 
FWC 1.35 1.49 2.22 1.61 1.76 2.37 2.53 2.26 2.89 
MAV 1.18 1.44 2.18 1.33 1.68 2.21 1.83 1.92 2.45 
MET 1.20 1.65 2.07 1.41 1.81 2.15 2.79 2.12 3.14 
MEX 2.33 2.26 2.80 1.66 1.78 2.45 1.91 2.04 2.66 
ENS 2.21 2.18 2.69 1.66 1.76 2.44 2.02 2.08 2.72 
RDF 1.49 1.58 2.11 1.58 1.75 2.30 2.61 2.33 3.31 

Abbreviations: FWC, NGM-based MOS forecast product; MAV, GFS-based short-range MOS forecast product; MET, NAM-based MOS forecast 

product; MEX, GFS-based extended-range MOS forecast product; ENS, GFS-based ensemble MOS forecast product; RDF, Revised digital forecast 

produced by the Detroit/Pontiac Region NWS Office; 1-day, forecast one day in advance; 2-day, forecast two days in advance; 3-day, forecast three 

days in advance. 
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Table 2. Heat wave days predicted by forecast products one-, two-, or three-days in advance compared with heat wave days defined based on 

observed data, Detroit, Michigan, USA, summers (May 1st to September 30th) 2002-2006a
. 

Observation 
and forecast 
products 

1- day 
Totalb 

1-day 
False 

positivec 

1-day 
False 

negatived 

1-day 
Correct 

2-day 
Total 

2-day 
False 

positive 

2-day 
False 

negative 

2-day 
Correct 

3-day 
Total 

3-day 
False 

positive 

3-day 
False 

negative 

3-day 
Correct 

Observede 14 14 14 
FWC 22 12 4 10 22 12 4 10 19 10 5 9 
MAV 17 9 6 8 19 7 2 12 16 5 3 11 
MET 21 11 4 10 20 10 4 10 20 13 7 7 
RDF 13 5 6 8 22 11 3 11 11 8 11 3 

aHeat wave days were defined as two or more days where apparent temperatures were greater than the 95th percentile values of apparent temperatures 

determined separately for each year; 1-day, forecast one day in advance; 2-day, forecast two days in advance; 3-day, forecast three days in advance. 
bTotal number of identified heat wave days. cFalse positive forecasts are days when the forecast product identifies heat waves that are defined as non– 

heat wave days in observed data. dFalse negatives are defined as observed heat wave days incorrectly identified as non heat wave days by forecasts. 
eObserved, weather observations in the Detroit Metro Airport. 
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Figure legends  

Figure 1. Estimated percentage difference in mortality associated with observed and forecast 

ATlag01 of 25.3ºC compared with 8.5ºC during the summertime (May to September) in Detroit, 

2002–2006, with and without adjustment for air pollution. All models are adjusted for heat wave 

days, day of the week, day of the year, and calendar year. A) No air pollution adjustment, B) 

adjusted for same day mean O3 concentration, C) adjusted for mean PM10 concentration on the 

previous day, D) adjusted for O3 and PM10. Abbreviations: DTW, observed data; FWC, 

NGM-based MOS forecast product; MAV, GFS-based short-range MOS forecast product; MET, 

NAM-based MOS forecast product; MEX, GFS-based extended-range MOS forecast product; 

ENS, GFS-based ensemble MOS forecast product; RDF, Revised digital forecast produced by 

the Detroit/Pontiac Region NWS Office; D1, forecast one day in advance; D2, forecast two days 

in advance; D3, forecast three days in advance. 

Figure 2. Estimated percentage difference in mortality associated with observed and forecast 

heat wave days compared with non–heat wave days during the summertime (May to September) 

in Detroit, 2002–2006, with and without adjustment for air pollution. All models are adjusted for 

ATlag01, day of the week, day of the year, and calendar year. A) No air pollution adjustment, B) 

adjusted for same day mean O3 concentration, C) adjusted for mean PM10 concentration on the 

previous day, D) adjusted for O3 and PM10. (Abbreviations: DTW, observed data; FWC, 

NGM-based MOS forecast product; MAV, GFS-based short-range MOS forecast product; MET, 

NAM-based MOS forecast product; MEX, GFS-based extended-range MOS forecast product; 
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ENS, GFS-based ensemble MOS forecast product; RDF, Revised digital forecast produced by 

the Detroit/Pontiac Region NWS Office; D1, forecast one day in advance; D2, forecast two days 

in advance; D3, forecast three days in advance.) 
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