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Abstract 

Background: A number of epidemiological studies have identified statistical associations 

between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses 

regarding underlying molecular mechanisms to explain these linkages have not been published.  

Objectives: To assess the underlying mechanisms of POPs that have been associated with 

metabolic diseases, 3 well-known POPs (2,3,7,8-Tetrachlorodibenzodioxin (TCDD), 

2,2',4,4',5,5'-Hexachlorobiphenyl (PCB 153), and p,p'-Dichlorodiphenyldichloroethylene (p,p’-

DDE)) were studied. We used advanced database search tools to delineate testable hypotheses 

and guide laboratory-based research studies into underlying mechanisms by which this POPs 

mixture could produce or exacerbate metabolic diseases. 

Methods: For these studies searches, a proprietary systems biology software 

MetaCoreTM/MetaDrugTM was used to conduct advanced search queries for the underlying 

interactions database, followed by directional network construction to identify common 

mechanisms for these POPs within 2 or less interaction steps downstream of their primary 

targets. These common downstream pathways belong to various cytokine and chemokine 

families with experimental well-documented causal associations with type 2 diabetes.  

Conclusions: Our systems biology approach allowed identification of converging pathways 

leading to activation of common targets downstream. To our knowledge, this is the first study to 

propose an integrated global set of step-by-step molecular mechanisms for a combination of 3 

common POPs, using a systems biology approach, which may link POPs exposure to diseases. 

Experimental evaluation of the proposed pathways may lead to development of predictive 

biomarkers of POPs’ effects, which could translate into disease prevention and more effective 

clinical treatment strategies.   
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Introduction 

Persistent organic pollutants (POPs) are ubiquitous environmental contaminants. They include 

polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), 

polychlorinated biphenyls (PCBs), and organochlorine pesticides. . TCDD, a representative of 

the dioxin chemical family, is unintentionally produced during chlorine bleaching processes, 

drinking water chlorination, and incineration processes (ATSDR 2012). P’, p’-DDE is a 

metabolite of DDT that has been used as insecticide for insect vectors of malaria and typhus 

(ATSDR 2008).  PCBs are industrial chemicals principally used as heat exchange fluids in 

transformers and capacitors were also banned in U S in 1977(ATSDR 2011).  

 Epidemiological studies have reported associations between  POPs and metabolic 

diseases such as Type 2 diabetes (T2D), obesity and metabolic syndrome, but potential 

underlying mechanism(s) are  not known (Langer et al.2014; Lee et al. 2006; 2010; 2011; 

Rylander et al. 2005; Suzuki et al. 2008). The 3 POPs evaluated here (TCDD, PCB 153, and 

p,p’-DDE) have been  associated with metabolic disorders in observational studies,  but potential 

molecular mechanisms that might underlie endocrine disruption and disease development are far 

from understood (Everett et al. 2007; Henriksen et al. 1997;Lee et al. 2014; Longnecker and 

Michalek 2000; Magliano et al. 2014; Rignell-Hydbom et al. 2007; Turyk et al. 2009;Wang et al. 

2008). 

 Because metabolic diseases are increasing in frequency throughout the world, further 

investigation and understanding of the possibility that exposure to POPs contributes to the 

etiology of diabetes, obesity, and cardiovascular disease is critical (Taylor et al. 2013; Thayer et 

al. 2012). Metabolic syndrome may affect up to 1 in 5 people, and its prevalence increases with 
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age (Paoletti et al. 2006). It is estimated that up to 25% of the U.S. population has metabolic 

syndrome (Ford et al. 2004). 

Researchers have hypothesized that low-level POPs exposure can cause metabolic 

changes through a network of pathways, including increased insulin resistance and obesity 

preceding the development of T2D (Barouki et al. 2012; Barrett 2013; Lee et al. 2014;Taylor et 

al. 2013). Within this network, different POPs might also cause the metabolic syndrome through 

slightly overlapping pathways to cause disturbance in glucose homeostasis. Such disturbances 

include inhibition of insulin action and induced down-regulation of master regulators of lipid 

homeostasis. The situation is further complicated by the realization that POPs –induced 

alterations in epigenetic regulatory mechanisms may occur during sensitive developmental 

periods leading to diseases such as obesity and T2D later in life (Barouki et al. 2012). 

In toxicology, systems biology facilitates the identification of important pathways and 

molecules from large data sets. These tasks that can be extremely laborious when performed by a 

classical literature search. Computational systems biology offers more advantages than just 

providing a high-throughput literature search engine. These tools may provide the basis for 

establishing hypotheses on potential links between environmental chemicals and human diseases. 

Comprehensive databases containing information on networks of human protein–protein 

interactions and protein–disease associations make this possible. Experimentally determined 

targets data of the specific chemical of interest can be uploaded and overlie into these networks 

to obtain additional information that can be used to establish hypotheses on links between the 

chemical and human diseases. Such information can also be applied for designing more 

intelligent animal and cell based laboratory experiments that can test the established hypotheses. 
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 In this study we examine potential linkages for combined exposures to 3 specific POPs, 

cellular pathway alterations, and metabolic disturbances related to the development of important 

clinical outcomes. We used an integrated global approach that brought together 1) predictive 

chemical analyses based on compound structure and 2) knowledge bases of chemogenomics data 

associating compounds to biological and toxicological properties. We then provided an in silico 

evaluation of the possible joint effects of POPs on metabolic pathways that could lead to 

metabolic diseases. We sought to discover downstream activation targets in common for all 3 

POPs as a mixture. Even though inhibitory targets were also analyzed, we chose to focus on the 

genes that could be ultimately up-regulated and lead to increased abundances on the protein 

level. The rationale for this was to set the stage for discovery of screening biomarkers, which, 

especially if present in easily accessible tissues/fluids, could be more accessible when increased 

in abundance, as opposed to depleted. It is hoped that these data will stimulate formation of new 

testable hypotheses to address some of the data gaps previously identified by Taylor et al. (2013) 

and Barrett 2013.  

Methods 

For this study 3 POPs (p, p’-DDE, TCDD and PCB 153) were selected for study since they are 

commonly detected in the environment, and in human tissues. Based upon the data from the 

epidemiological and data mining literature noted above, they are also linked with metabolic 

diseases such as T2D (Everett et al. 2007; Henriksen et al. 1997;Lee et al. 2010; Longnecker and 

Michalek 2000; Turyk et al. 2009;Wang et al. 2008). 

The majority of available POPs studies have focused on them on an individual basis. To our 

knowledge, there are no published studies on their combined potential interactive effects at the 

molecular level in relation to clinical disease outcomes. 
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The pathway analysis tools: Metacore/Metadrug 

The molecular structure (.mol) files of 3 POPs: p, p’-DDE, TCDD and PCB 153 (Figure 1) were 

separately uploaded to MetaCoreTM/MetaDrugTM, a proprietary systems biology software 

solution by Thomson Reuters (originally developed by Genego, Inc) (http://portal.genego.com.).  

This software is built on proprietary database (MetaBaseTM) to allow functional and network 

analysis of primary and secondary effects of any query compound in the context of manually 

curated molecular interactions and pathways (Ekins et al. 2007). 

MetaCoreTM/MetaDrugTM are analytical tools built on top of a manually curated database 

of literature findings that support various types of molecular interactions and ontologies, 

including disease relationships. These tools help analyze information from user’s experimental 

results or use the options of mining the underlying content from the database MetaBaseTM 

content directly.      

The Advanced Search is a java application tool with in MetaCoreTM, which facilitate the 

searching of combined information, e.g. “find all compounds that inhibit EGFR with IC 50 lower 

than 1 µM”. By using Advanced Search allows us to can create such a Boolean query and 

retrieve the results. A detailed methodological description of the systems biology procedures and 

protocols for using these software are available at http://lsresearch.thomsonreuters.com/. 

However, to be available to access or reproduce the data from proprietary tools, researchers need 

to obtain a trial license or a paid license. 

When query content from MetaBaseTM, Advanced Search allows us to differentiate low 

and high trust annotation information behind interactions. High trust means that this content was 

confirmed to have published small-scale experimental evidence (e.g., Co-Immunoprecipitation 

plus luciferase reporter assay). Low trust interactions have only been validated via high-
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throughput screening / co-expression or predictive analysis studies, and lack more rigorous 

experimental evidence. Molecular entities can affect a target directly and indirectly. Mechanisms 

which are used to describe the direct physical interactions include: binding, covalent 

modifications, phosphorylation, etc. Indirect mechanisms include: influence on expression; co-

regulation of transcription, unspecified, and others, as stated in the legend. Only high-trust direct 

interactions with known effects (activation or inhibition) were used for this study. 

POPs Pathway Analysis 

To map all the possible pathways from the 3 selected POPs to their downstream targets, 

first, primary targets (this is a direct chemical action of which its target will lead to a response in 

the cells of the mammalian organism. All others targets of the chemical are accounted for as 

secondary) were determined using MetaCoreTM and MetaDrugTM content. Of those, only direct 

binding targets that have further downstream interactions were considered. To narrow down the 

complexity presented by primary targets that already participate in thousands of annotated 

molecular interactions, Advanced Search tool was used. It allowed construction of direct 

database queries of interactions that lead from primary/direct targets of each POP to the common 

targets shared by all 3 POPs in 3 steps or less and with an inferred activating effect. This meant 

that from the compound itself the allowed network depth / distance would be 3 steps or less. The 

focus on downstream activation targets was presumed to be of most utility if such targets were to 

be used for detection as biomarkers. All combinations of path lengths within 3 interactions were 

considered. For example, some targets may be 2 steps downstream of one POP, but 3 steps 

downstream of the other 2 POPs. For all the multi-steps paths, the assumption was made that to 

achieve downstream activation, not only activation interactions, but also inhibitory ones can be 

considered, as long as they would add up to the final effect of activation. For example, inhibition 
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of an inhibitor can result in subsequent activation, so all combinations of the following 

interaction paths were considered in our search queries: 

2-step paths:  

activation, activation 

inhibition, inhibition 

3-step paths: 

activation, activation, activation 

activation, inhibition, inhibition 

inhibition, inhibition, activation 

inhibition, activation, inhibition 

Note that there were no common primary targets for all 3 POPs, hence, no 1-step paths 

were obtained in this analysis.  

The resulting combined list of potential common activation targets was used for network 

construction. The “shortest paths” network building option (the maximum number of interaction 

steps is defined by the user from a range of 1 to 10 interaction steps, and was set to 3 as a 

maximum for this case; the algorithm attempts to build the shortest directed paths between 

selected objects using up to the maximum number of interactions defined by the user). This 

yielded the resulting interconnected network diagram. Interaction effects were then checked for 

concordance (or agreement, to make sure there was no conflicting interactions). Only direct 

activation or inhibition interactions were used for network construction (Direct means small-

scale molecular physical interactions, as described earlier, with effect of interaction being either 

activating or inhibiting, which means that interactions that are indirect or have an unspecified 

effect would not be considered by the shortest paths algorithm). Only concordantly regulated 
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molecules (also referred to as network nodes) were displayed on the final network with only 

those interactions that lead to downstream activation. This means that the terminal nodes (those 

genes/proteins that only have upstream interactions) had only those sequences of interactions 

leading toward them that would amount to activation. Even though advanced queries resulted in 

target lists (queries result in a list of genes), network building was still needed for a visual 

representation of the interaction space that met the requirements of the queries and 

mechanistically tied the POPs to the targets. It was also needed to manually check and remove 

any signaling conflicts, which still arose between intermediate nodes along the queried paths. For 

example, if gene A was a logical linker downstream of a POP target and its downstream common 

activation target, but was regulated in an opposite direction by the primary target of another 

POP, then this would become a mixed message and would have to be removed from the final 

network. In other words, a mixed message would be one where an intermediate protein is 

receiving a signal from a POP through its target to behave in one way (for example to activate or 

induce signaling), but through a second target for another POP effect would be opposite (to 

inhibit or suppress signaling) this would give the intermediate protein conflicting signals. 

The final network was narrowed to only those downstream targets associated with the 

following: diabetes/insulin resistance (IR), obesity, and metabolic syndrome X. Finally, to clarify 

the specific signaling paths, the final network was sub-divided into sub-networks with smaller 

portion of information based on one downstream target at a time for greater resolution. 

Results 

Interaction Queries and Network Construction 

  Starting with the 3 nodes that represent TCDD, PCB 153, and p, p’-DDE, we were able to 

identify primary targets by using advanced database search queries, followed by directional 
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network construction. Because these 3 POPs are so structurally different, they bind different 

primary targets: pregnane X (PXR) receptors for PCB 153, androgen receptor (AR) for p, p’-

DDE, and aryl hydrocarbon receptor (AhR) for TCDD. This suggested different modes of action 

and downstream effects for these 3 chemicals. However, with the addition of only 1 or 2 more 

interaction steps, the literature-based pathway reconstruction/ modeling approach made it 

possible to determine which activation targets of 1 or 2 of these compounds can also be activated 

by the third compound. Such converging common activation targets were identified from 

cumulative results achieved by the Advanced Search queries; 349 concordance targets were 

identified in 3 steps or less (data not shown), and have known positive disease association. Only 

High-trust direct physical interactions of known effects (activation or inhibition) were used for 

the queries and for the network building. Network was built downstream of all 3 POPs using 3-

steps or less for Dijstra’s shortest paths algorithm. All interaction effects were then checked for 

concordance on the final network representation. 

Proposed Final Network 

The connectivity of the network revealed that 6 targets (IL-6, IL-8, RelA (p65), c-Jun, FKHR, 

and Cyclin D1) are activated by the 3 POPs in 2.33 steps on average (2 steps from 2 of the POPs 

and 1 other step from the third (so 3 steps from the 3rd POP), therefore, the average of each 

chemical steps (2+2+3)/3= 2.33). The network also showed that 35 targets were activated by the 

3 POPs in 2.67 steps on average (2 steps from 1 of the chemicals and 1 additional step from the 2 

others, (2+3+3)/3=2.67), which yields 41 total targets that could be activated by the 3 POPs in 

less than 3 network interaction steps on average. 

 The complete final network (Figure 1) reveals the genes associated with diabetes/insulin 

resistance, or obesity, or metabolic syndrome X (union, large gray circles around gene icons). 
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The genes that also have a small circle (tagging the gene’s icon on top-right) represent the 

annotated associations with all 3 diseases (intersection). Based on this systems biology generated 

global network (Figure 1), a joint mechanism of action was proposed for the combined exposure 

to the 3 POPs or the additive effects that may be anticipated. Figure 1 shows some intermediate 

cross interactions between the downstream targets (shown in green). These common activation 

processes can influence or activate each other and imply even more functional and mechanistic 

connectivity/synergy. Although this systems biology–generated global network cannot be 

considered as a proof of causal linkages without further experimental validation, it provides 

justification for the mechanistic hypothesis and contributes to new interpretation linking 

available published toxicology and disease information domains. 

Delineating Sub-Pathways from the Network 

To clarify specific signaling pathways, the final global network was divided into sub-networks 

with smaller portions of information for greater resolution. For example, interleukin-8 (IL-8) can 

be activated by p, p’-DDE via AR (inhibition of an inhibitor) and activated by TCDD via AhR 

(activation of an activator) (Vogel et al. 2007) (Figure 2). PCB 153 is not known to activate IL-8 

directly or through its primary target (PXR). However, with evaluation of one additional step, a 

plausible mechanism was revealed: CREB1 can be activated by PCB 153 through PXR 

(inhibition of an inhibitor) via documented (Kodama et al. 2007; Tabb et al. 2004) direct binding 

interactions. CREB1 can then lead to activation of IL-8 via well-documented promoter binding 

(Mayer et al. 2013) (Figure 2). The potential link between IL-8 and PCB 153 is noteworthy. It 

establishes a link between PCB 153 and IL-8 through CREB1 by allowing 1 immediate step.  

 Interleukin-6 (IL-6) is well known to promote inflammation and pro-inflammatory effects 

(Scheller et al. 2011). As illustrated in Figure 3, our analysis suggests that that IL-6 can be 
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directly activated by TCDD via AhR and ARNT complex (activation of an activator), which are 

close neighbors of IL-6 that often act together in many pathways. AhR can also activate RelA, 

which can activate IL-6. PCB 153 and p, p’-DDE can inhibit RelA (inhibition of an inhibitor) via 

PXR and AR, respectively, and then RelA activates IL-6. There is a direct path for activation of 

IL-6 from p, p’-DDE via AR (inhibition of an inhibitor). IL-6 could be activated from PCB 153 

in the same pathway as described for IL-8 (Kodama et al. 2007; Tabb et al. 2004). 

 As illustrated in Figure 4, our analysis suggests that tumor necrosis factor-alpha (TNF-α). 

TNF-α can be activated by TCDD via AhR and RelA (activation of an activator) and then RelA 

will directly activate TNF-α, and though p, p’-DDE via AR and c-Jun (inhibition of an inhibitor). 

PCB 153 shows same pathways as described for IL-6 and IL-8. PXR (inhibition of an inhibitor) 

also provides a direct path for activation of TNF-α from PCB 153. CREB1 could be an important 

link to get to these cytokines activation pathways. RelA could represent a common step in the 

activation of TNF-α by all of these individual POPs. C-Jun is important in all of the 

inflammation pathways and, together with RelA, promotes the inflammation pathway (Ip and 

Davis 1998; Tak and Firestein 2001). 

 As illustrated in Figure 5, our analysis suggests that fetuin A can be activated by TCDD 

via AhR and RelA (activation of an activator) and then RelA will directly activate fetuin A. PCB 

153 and p,p’-DDE could inhibit RelA (inhibition of an inhibitor) via PXR and AR respectively, 

and then RelA activates fetuin A. Again, it is a noteworthy observation that RelA could represent 

a common step in the activation of fetuin A, IL-6 and TNF-α by all of these individual POPs. 

Thus, the counterpart pro-inflammatory effects of these proteins through intracellular signaling 

pathways may involve the RelA systems. 
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 Overall, the whole resulting network is populated with a combination of metabolic genes, 

insulin signaling, immune response signaling, and inflammation cascade of cytokines and 

transcription factors. Based on our analysis, we hypothesize that common pathways that 

converge through the cytokines may contribute to inflammatory processes that may lead to 

metabolic diseases via circulation and also creation of a chronic inflammatory background in 

adipocytes, liver, and pancreatic tissues. This can lead to impact on adipogenesis, pancreatic 

beta-cell dysfunction, insulin resistance, glucose intolerance, liver disease, inability to cope with 

increased dietary intake, which over time can amount to development of more serious metabolic 

disease phenotypes. Apart from inflammation, some cancer-associated targets are also present. 

For example, as illustrated in Figure 6, our analysis suggests that cyclin D1 and IL-8 share 

common pathways. Three steps from PCB 153 through PXR and CREB1, it will reach cyclin D1, 

as the same way of IL-8. Also, cyclin D1 is activated though AhR from TCDD, the same way as 

IL-8 is activated. Similar steps occur with the direct transcription methylation of AR that is then 

inhibited though p, p-DDE. Thus, based on our analysis, we hypothesize that could be  an 

overlay of mechanisms between inflammatory processes and cancer development and 

progression that increases the potential for carcinogenicity of mixtures of these POPs.  

Discussion 

By integrating available information and bridging the gap between toxicology, epidemiology, 

and chemistry within the world of disease mechanisms, we can look further beyond the primary 

target of the individual POPs by 2 or 3 steps down the relevant pathway. Analysis of molecular 

networks and all possible downstream targets is very complex. Our approach, based on 

mechanistic annotated networks, allows identification of common targets that are beyond 

primary targets. Although molecular interactions data for individual POPs have been reported in 
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the literature and confirmed by published experimental studies (Goldberg 2009, Kuwatsuka et al. 

2013), to our knowledge, these data have not been previously integrated as a mixture in the step-

by-step continuum and sequential manner described here. 

For example, p, p’-DDE, TCDD, and PCB 153 can act as agonists or antagonists of the 

AR, AhR, PXR, respectively (ATSDR 2008; 2012; 2011). These characteristics make these 

chemicals of specific concern for developing organisms that are highly sensitive to hormonal 

changes and exposure to these chemicals is critical because this could result in permanent 

changes throughout life. They might act over time at low exposure levels during fetal or early 

life periods and have a particular impact on health. The finding of potential human health effects 

from interactions to multiple chemicals in epidemiological studies faces many difficulties, and 

there is a great need for reliable biomarkers of effect and exposure. Nevertheless, recent reports 

support the notion that documented interactions downstream of the POPs implicate each POP in 

perturbation of pathways that might lead to various metabolic diseases such as obesity and T2D 

(Scrivo et al. 2011).  

A closer look at the nuclear receptor signaling pathway reveals that PCB 153, TCDD, and 

p, p’-DDE have overlapping and interconnected pathways that have potential to cause biological 

perturbations through the different nuclear receptor signaling pathways. AhR directly activates 

and transcriptionally regulates expression of IL-8(Vogel et al. 2007), and IL-8 and TCDD was 

associated with diabetes in a cross-sectional analysis data from NHANES cohort ( Lee et al. 

2006).  Our systems biology analysis suggests  a link between PCB 153 and IL-8 through 

CREB1 by allowing 1 immediate step from its primary target. The potential link between IL-8 

and PCB 153 is noteworthy. CREB1 could be an important link to get to cytokines activation 

pathways. Based on our analysis, we can hypothesize a joint toxic action pathway (IL-8 as well 
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as others cytokines) for the mixtures of these 3 specific POPs that could be experimentally tested 

and extended to other POPs.  

  Various toxic compounds may trigger abnormal inflammatory responses directly or 

indirectly by interfering with normal physiological functioning of cells or tissues (Medzhitov 

2008). These effects could play a role in the development of insulin resistance and diabetes.  In a 

cross-sectional study of nondiabetic individuals where most of them had cancer, Kim et al. 

(2014) analyzed the influence of POP concentrations on insulin resistance. A cross-sectional 

study of 39 Caucasians and 72 First Nations adults by Imbeault et al. 2012 reported a weak but 

significant association of elevated levels of POPs with cytokines. Studies on POPs and human 

adipose cells, showed that precursor cells and adipocytes were targets of POPs, and that these 

pollutants trigger mainly the inflammation pathway (Kim et al. 2012). In a Japanese study 

involving 40 Yusho patients and 40 controls, Kuwatsuka et al. (2013) demonstrated that serum 

levels of certain interleukins (IL-17, IL-1β, and IL-23) and tumor necrosis factor-α (TNF-α) were 

higher in patients who were exposed to POPs, including PCBs through consumption of 

contaminated rice oil (Kuwatsuka et al. 2013). Circulating inflammatory biomarkers such as 

CRP, IL-6, TNF α, monocyte chemotactic protein 1 (MCP 1), intercellular adhesion molecule 1 

(ICAM 1), vascular cell adhesion protein 1 (VCAM 1), and E-selectin have been associated with 

a variety of metabolic disorders and associated outcomes (Goldberg 2009). However, in a study 

population of 72 participants, Pal et al. 2013 reported no significant association between POPs 

concentrations and markers of insulin resistance when compared diabetic to non-diabetic 

individuals in Northern Ontario population. Similarly, in a cross-sectional study of 1016 

individuals (all 70 years of age) from Sweden, Kumar et al. 2014 observed no association 

between levels of POPs and pro-inflammatory cytokines (IL-6, MCP-1, and TNF-α). Differences 
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in results between studies could be attributable to various factors, including number of 

individuals in the studies, presence of others diseases, gut microbiota, diet composition, early-life 

nutrition and non-causal associations due to confounding or other sources of bias. 

 Numerous studies as mentioned previously have shown a connection between cytokines 

and metabolic disease, cytokines levels and POPs, and POPs levels and metabolic diseases. 

However, few give a clear articulation of the underlying mechanisms, particularly for chemical 

mixtures of similar and dissimilar chemicals. In the study of disease biology and the 

pathogenesis of diseases, much effort is given to elucidating new pathways and validating those. 

It is less common to actually trace pathways all the way back to identify how toxicant exposures 

on an individual or mixture basis could lead to disturbances in these molecular regulatory 

systems.  

 At present, there is no clear explanation for differences in POPs exposures and T2D 

reported in epidemiological studies. This apparent inconsistency may be related to the idea that 

POPs are involved in the pathogenesis of T2D by interfering with endocrine signaling pathways. 

Low-dose effects have been proposed as possible biological responses to POPs as endocrine 

disruptors (Vandenberg et al. 2012). Endocrine function generally declines with age because 

hormone receptors become less sensitive and levels of most hormones change with age (Chahal 

and Drake 2007). Therefore, the different age distributions among study populations might have 

led to different results, even when comparing similar concentrations of POPs. In addition, 

endocrine-disturbing effects of a specific POP might differ relative to the presence and 

concentrations of other potential endocrine disruptors. Inconsistences across studies may be also 

to the underlying risk (nutrition, polymorphism, non-chemical stressors, and diseases) in the 

population as well as endocrine state (sex, menopausal status). Humans are exposed to a mixture 
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of various POPs, and exposure patterns are unique to each study population. Although 

concentrations of a particular POP might be similar between 2 populations, the strength of 

association between that POP and diabetes can differ depending on concentrations of other 

POPs. These POPs are lipophilic and have similar pharmacokinetic behavior in the body, which 

means they have the possibility to interact and influence the overall joint toxicity, so they should 

be considered as mixtures instead of on an individual basis. Hence, we need highly sophisticated 

data analysis tools to correlate multi-chemical POP exposure and health effects associations 

observed in epidemiological studies.  

 Novel methods of analysis including machine learning, bioinformatics and systems 

biology tools are available and can be used to identify specific outcome pathways from complex 

data (Minihane et al. 2015). Such efforts if persuaded will help identify specific and sensitive 

biomarkers as proposed in our study. This type of cluster identification of biomarkers as 

signatures of chemical mixtures exposure will help advance mixtures risk assessment methods 

development.  Epidemiological studies need to assess inflammatory markers related to metabolic 

diseases, therefore, the sensitivity and specificity of these available biomarkers that are 

influenced by a range of modifying factors (chemical mixture components, age, sex, diet, 

disease, gut biota, etc) can be studied using multiple sophisticated techniques.  Innovative 

inflammation markers could be developed for their use in human population studies, disease 

prevention and clinical use to detect multiple chemical exposures.  

  The resulting global network of common downstream activation targets was significantly 

enriched with metabolic disease category. Interestingly, neoplasms were also over-represented 

among the common targets with transcription factors, receptor tyrosine kinases, and cyclin 
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genes. This share common pathway could guide our understanding of the potential carcinogenic 

mechanisms shared by the POPs.  

 The final network presents a novel systems biology and toxicology model of different 

molecular mechanisms of POPs action that point to common disease outcomes. Future 

experimental evaluation of this model might lead to the development of new predictive markers 

of POPs effects that could translate into new disease prevention and clinical use strategies. 

Specific avenues of laboratory research might include, but not limited to, in vitro studies of 

target cell populations such as liver cells and adipocytes, moreover, cell lines studies can be done 

with pancreatic cells, hepatocytes, and brown adipocytes. Complimentary in vivo studies in both 

normal and obese mouse strains dosed with POPs could be performed to determine if the 

observed in vitro study findings are observed after in vivo exposure.  Also, transgenic mouse 

models with human fatty acid metabolism genes and any other potential monogenic or polygenic 

rodent models. Both in vitro and in vivo studies should be conducted using exposure to the 3 

selected POPs on an individual or mixture basis using a factorial design approach. Specific 

receptors or pathway nodes of interest identified using these combined in silico laboratory model 

approaches could be technically evaluated by application of genomic, proteomic or metabolomic 

methods. Putative biomarkers identified by these combined approaches could be further 

developed/translated into commercial test kits for clinical applications.      

In conclusion,	we examined 3 representative POPs and their possible combined effects 

via possible protein-protein interactions. Our results, using the inflammatory biomarkers 

pathway, demonstrated that looking beyond individual an individual chemical’s pathway reveals 

a complex network of pathways that could be the basis of potential mechanism of joint toxicity 

of mixtures.  Hence, the body burden of chemical mixtures, particularly those of lipophilic 
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chemicals such as POPs should be considered within the larger framework of diabetes, metabolic 

syndrome and other chronic diseases prevention.   Biomarkers identified through such pathway 

analyses could be studied thoroughly and used to test real life mixture exposures.  Further 

investigations carried out to study the influence of factors such as multiple chemical exposures, 

nutrition, age, gender, and genetic variations will help develop personalized specific treatment 

protocols for these complex diseases.   

   



Environ Health Perspect DOI: 10.1289/ehp.1510308 
Advance Publication: Not Copyedited 

 

21 

 

References  

Agency for Toxic Substances and Disease Registry (ATSDR) 2012. Addendum Toxicological 

profile for Chlorinated Dibenzo-p-Dioxins. U.S. Department of Health and Human Services, 

Public Health Service, Atlanta, GA 

Agency for Toxic Substances and Disease Registry (ATSDR) 2008. Addendum Toxicological 

profile for DDT, DDE and DDD. U.S. Dept. Health Services, Public Health Service; Atlanta, 

GA.  

Agency for Toxic Substances and Disease Registry (ATSDR) 2011. Addendum Toxicological 

profile for polychlorinated biphenyls (PCBs). U.S. Dept. Health Services, Public Health Service; 

Atlanta, GA.  

Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ. 2012. Developmental origins of 

non-communicable disease: Implications for research and public health. Environmental health: a 

global access science source 11:42. 

Barrett JR. 2013. Pops vs. Fat: Persistent organic pollutant toxicity targets and is modulated by 

adipose tissue. Environ Health Perspect 121:a61. 

Chahal H and Drake W. 2007. The endocrine system and ageing. J. Pathol., 211: 173–180. 

Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T. 2007. Pathway mapping tools for 

analysis of high content data. Methods Mol Biol 356:319-350. 

Everett CJ, Frithsen IL, Diaz VA, Koopman RJ, Simpson WM Jr, Mainous AG III. 2007. 

Association of a polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with 

diabetes in the 1999–2002 National Health and Nutrition Examination Survey. Environ Res 

103:413–418. 

Ford ES, Giles WH, Mokdad AH. 2004. Increasing prevalence of the metabolic syndrome 

among U.S. adults. Diabetes Care 27:2444–2449.  



Environ Health Perspect DOI: 10.1289/ehp.1510308 
Advance Publication: Not Copyedited 

 

22 

 

Goldberg RB. 2009. Cytokine and cytokine-like inflammation markers, endothelial dysfunction, 

and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol 

Metab 94:3171–3182. 

Henriksen GL, Ketchum NS, Michalek JE, Swaby JA. 1997. Serum dioxin and diabetes mellitus 

in veterans of Operation Ranch Hand. Epidemiology 8:252–258. 

Imbeault P, Findlay CS, Robidoux MA, Haman F, Blais JM, Tremblay A, et al. 2012. 

Dysregulation of cytokine response in Canadian first nation’s communities: is there an 

association with persistent organic pollutant levels? PloS One 7:e39931. 

Ip YT, Davis RJ. 1998. Signal transduction by the c-jun n-terminal kinase (jnk)--from 

inflammation to development. Current opinion in cell biology 10:205-219. 

Kim KS, Lee YM, Kim SG, Lee IK, Lee HJ, Kim JH, et al. 2014. Associations of organochlorine 

pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 

diabetes and insulin resistance. Chemosphere 94:151–157. 

Kim MJ, Pelloux V, Guyot E, Tordjman J, Bui LC, Chevallier A, et al. 2012. Inflammatory 

pathway genes belong to major targets of persistent organic pollutants in adipose cells. Environ 

Health Perspect 120:508–514. 

Kodama S, Moore R, Yamamoto Y, Negishi M. 2007. Human nuclear pregnane X receptor 

cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochem J 

407:373–381. 

Kumar J, Lind PM, Salihovic S, van Bavel B, Ingelsson E, Lind L. 2014. Persistent organic 

pollutants and inflammatory markers in a cross-sectional study of elderly Swedish people: The 

pivus cohort. Environ Health Perspect 122:977-983. 

Kuwatsuka Y, Shimizu K, Akiyama Y, Koike Y, Ogawa F, Furue M, et al. 2014. Yusho patients 

show increased serum IL-17, IL-23, IL-1β, and TNFα levels more than 40 years after accidental 

polychlorinated biphenyl poisoning. J Immunotoxicol 11:246–249. 



Environ Health Perspect DOI: 10.1289/ehp.1510308 
Advance Publication: Not Copyedited 

 

23 

 

La Merrill M, Emond C, Kim MJ, Antignac JP, Le Bizec B, Clement K, et al. 2013. 

Toxicological function of adipose tissue: Focus on persistent organic pollutants. Environ Health 

Perspect 121:162–169. 

Langer P, Ukropec J, Kocan A, Drobna B, Radikova Z, Huckova M, et al. 2014. Obesogenic and 

diabetogenic impact of high organochlorine levels (HCB, p, p’-DDE, PCBs) on inhabitants in the 

highly polluted eastern Slovakia. Endocrine regulations 48:17–24. 

Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, et al. 2006. A strong dose-response 

relation between serum concentrations of persistent organic pollutants and diabetes: results from 

the National Health and Examination Survey 1999–2002. Diabetes Care 29:1638–1644. 

Lee DH, Lind PM, Jacobs DR, Jr, Salihovic S, van Bavel B, Lind L. 2011. Polychlorinated 

biphenyls and organochlorine pesticides in plasma predict development of type 2 diabetes in the 

elderly: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) study. 

Diabetes Care 34:1778–1784.  

Lee DH, Porta M, Jacobs DR, Jr., Vandenberg LN. 2014. Chlorinated persistent organic 

pollutants, obesity, and type 2 diabetes. Endocrine reviews 35:557-601. 

Lee DH, Steffes MW, Sjödin A, Jones RS, Needham LL, Jacobs DR., Jr. 2010. Low dose of 

some persistent organic pollutants predicts type 2 diabetes: a nested case–control study. Environ 

Health Perspect 118:1235–1242.  

Longnecker MP, Michalek JE. 2000. Serum dioxin level in relation to diabetes mellitus among 

Air Force veterans with background levels of exposure. Epidemiology 11:44–48. 

Magliano DJ, Loh VH, Harding JL, Botton J, Shaw JE. 2014. Persistent organic pollutants and 

diabetes: A review of the epidemiological evidence. Diabetes Metab 40:1–14. 

Mayer TZ, Simard FA, Cloutier A, Vardhan H, Dubois CM, McDonald PP. 2013. 

The p38-MSK1 Signaling Cascade Influences Cytokine Production through CREB and C/EBP 

Factors in Human Neutrophils. Journal of Immunology 191:4299-4307. 

Medzhitov R. 2008. Origin and physiological roles of inflammation. Nature 454:428–435. 



Environ Health Perspect DOI: 10.1289/ehp.1510308 
Advance Publication: Not Copyedited 

 

24 

 

Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. 2015. Low-grade 

inflammation, diet composition and health: Current research evidence and its translation. Br J 

Nutr: 1-14. 

Pal S, Blais JM, Robidoux MA, Haman F, Krummel E, Seabert TA, et al. 2013. The association 

of type 2 diabetes and insulin resistance/secretion with persistent organic pollutants in two first 

nations communities in Northern Ontario. Diabetes & metabolism 39:497-504. 

Paoletti R, Bolego C, Poli A, Cignarella A. 2006. Metabolic Syndrome, Inflammation and 

Atherosclerosis. Vascular Health and Risk Management 2:145-152. 

Rignell-Hydbom A, Rylander L, Hagmar L. 2007. Exposure to persistent organochlorine 

pollutants and type 2 diabetes mellitus. Hum Exp Toxicol 26:447–452. 

Rylander L, Rignell-Hydbom A, Hagmar L. 2005. A cross-sectional study of the association 

between persistent organochlorine pollutants and diabetes. Environ Health 4:28. 

Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. 2011. The pro- and anti-inflammatory 

properties of the cytokine interleukin-6, Biochimica et Biophysica Acta (BBA) - Molecular Cell 

Research. 1813: 878-888.Scrivo R, Vasile M, Bartosiewicz I, Valesini G. 2011. Inflammation as 

“common soil” of the multifactorial diseases. Autoimmun Rev 10:369–374. 

Suzuki T, Hirata K, Elkind MSV, Jun Z, Rndek T, Miyake Y, et al. 2008. Metabolic syndrome, 

endothelial dysfunction, and risk of cardiovascular events: the Northern Manhattan Study 

(NOMAS). Am Heart J 156:405–410.  

Tabb MM, Kholodovych V, Grun F, Zhou C, Welsh WJ, Blumberg B. 2004. Highly chlorinated 

PCBs inhibit the human xenobiotic response mediated by the steroid and xenobiotic receptor 

(SXR). Environ Health Perspect 112:163–169. 

Tak PP, Firestein GS. 2001. Nf-kappab: A key role in inflammatory diseases. The Journal of 

clinical investigation 107:7-11. 



Environ Health Perspect DOI: 10.1289/ehp.1510308 
Advance Publication: Not Copyedited 

 

25 

 

Taylor KW, Novak RF, Anderson HA, Birnbaum LS, Blystone C, Devito M, et al. 2013. 

Evaluation of the association between persistent organic pollutants (POPs) and diabetes in 

epidemiological studies: a national toxicology program workshop review. Environ Health 

Perspect 121:774–783. 

Thayer KA, Heindel JJ, Bucher JR, Gallo MA. 2012. Role of environmental chemicals in 

diabetes and obesity: a National Toxicology Program workshop report. Environ Health Perspect 

120:779–789. 

Turyk M, Anderson H, Knobeloch L, Imm P, Persky V. 2009. Organochlorine exposure and 

incidence of diabetes in a cohort of Great Lakes sport fish consumers. Environ Health Perspect 

117:1076–1082.  

Vandenberg LN, Colborn T, Hayes TB, et al. 2012. Hormones and Endocrine-Disrupting 

Chemicals: Low-Dose Effects and Nonmonotonic Dose Responses. Endocrine Reviews. 33:378-

455. 

Vogel CF, Sciullo E, Li W, Wong P, Lazennec G, Matsumura F. 2007. Relb, a new partner of 

aryl hydrocarbon receptor-mediated transcription. Molecular endocrinology (Baltimore, Md) 

21:2941-2955. 

Wang SL, Tsai PC, Yang CY, Guo YL. 2008. Increased risk of diabetes and polychlorinated 

biphenyls and dioxins: a 24-year follow-up study of the Yucheng cohort. Diabetes Care 

31:1574–1579.  

  



Environ Health Perspect DOI: 10.1289/ehp.1510308 
Advance Publication: Not Copyedited 

 

26 

 

Figure Legends 

Figure 1. Proposed Global Network for potential converging genes associated with 

diabetes/insulin resistance, or obesity, or metabolic syndrome X, and the three POPs. Green 

arrows= activating interactions; Red arrows= inhibiting interactions. Thick lines= highlight the 

closest interactions. Large gray circles represent the genes that are union. Small red circles 

indicate the intersection genes for the 3 diseases. POPs=purple hexagon; Catalytic factors= 

yellow; transcription factors= red; Cytokines and lipoproteins=green; receptors and adaptor 

proteins=blue. Symbols as defined by MetaCoreTM at 

http://lsresearch.thomsonreuters.com/static/uploads/files/2014-

05/MetaCoreQuickReferenceGuide.pdf 

Figure 2. Activation of IL-8. Green arrows= activating interactions; Red arrows= inhibiting 

interactions. Thick lines= highlight the closest interactions. Thin Lines= Intermediate and farther 

interactions. POPs=purple hexagon; Cytokine IL-8 in green; Transcription factors in red. 

Symbols as defined by MetaCoreTM at 

http://lsresearch.thomsonreuters.com/static/uploads/files/2014-

05/MetaCoreQuickReferenceGuide.pdf 

Figure 3. Activation of IL-6. Green arrows= activating interactions; Red arrows= inhibiting 

interactions. Thick lines: highlight the closest interactions. Thin Lines= Intermediate and farther 

interactions. POPs=purple hexagon; cytokine IL-6 in green; Transcription factors in red. 

Symbols as defined by MetaCoreTM at 

http://lsresearch.thomsonreuters.com/static/uploads/files/2014-

05/MetaCoreQuickReferenceGuide.pdf 

Figure 4. Activation of TNF-α. Green arrows= activating interactions; Red arrows= inhibiting 

interactions. Thick lines= highlight the closest interactions. Thin Lines= Intermediate and farther 

interactions. POPs=purple hexagon; Cytokine TNF-α in green; Transcription factors in red. 

Symbols as defined by MetaCoreTM at 

http://lsresearch.thomsonreuters.com/static/uploads/files/2014-

05/MetaCoreQuickReferenceGuide.pdf 
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Figure 5. Activation of fetuin A. Green arrows= activating interactions; Red arrows=inhibiting 

interactions. Thick lines= highlight the closest interactions. Thin Lines= Intermediate and farther 

interactions. POPs=purple hexagon; Generic binding protein Fetuin A in blue; Transcription 

factors in red. Symbols as defined by MetaCoreTM at 

http://lsresearch.thomsonreuters.com/static/uploads/files/2014-

05/MetaCoreQuickReferenceGuide.pdf 

Figure 6. Activation of IL-8 and cyclin D1 (Proposed inflammation and cancer share the same 

POP’s mixture pathway). Green arrows= activating interactions; Red arrows= inhibiting 

interactions. The POPs (TCDD, PCB 153 and p, p’-DDE are depicted in purple (hexagonal 

symbols), transcription factors in red (flash star symbol), Generic binding protein Cyclin D1 in 

blue and cytokine IL-8 in green. Thick red and green arrows emphasize primary POP binding 

targets with inhibiting and activating effects, respectively. Yellow highlight shows those paths 

that needed an additional node (CREB1) in order to further converge on the same downstream 

targets via PXR, whereas AR and AHR directly connect to the common downstream targets. 

MetaCoreTM by Thomson Reuters http://lsresearch.thomsonreuters.com/static/uploads/files/2014-

05/MetaCoreQuickReferenceGuide.pdf 
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