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Abstract 

Background: Perfluorinated chemicals (PFCs) disrupt cholesterol homeostasis. All steroid 

hormones are derived from cholesterol and steroid hormones such as glucocorticoids and 

androgenic hormones mediate several vital physiologic functions. However, the in utero effects 

of PFCs exposure on the homeostasis of these steroid hormones are not well understood in 

humans. 

Objectives: We examined the relationship between prenatal exposure to perfluorooctane 

sulfonate (PFOS)/perfluorooctanoate (PFOA) and cord blood levels of glucocorticoid and 

androgenic hormones. 

Methods: We conducted a hospital-based birth cohort study between July 2002 and October 

2005 in Sapporo, Japan (n=514). In total, 185 mother-infant pairs were included in the present 

study. Prenatal PFOS and PFOA levels in maternal serum samples were measured using liquid 

chromatography-tandem mass spectrometry (LC-MS-MS). Cord blood levels of glucocorticoid 

(cortisol and cortisone) and androgenic hormones (dehydroepiandrosterone (DHEA) and 

androstenedione) were also measured in the same way. 

Results: We found a dose-response relationship of prenatal PFOS, but not PFOA, exposure with 

glucocorticoid levels after adjusting for potential confounders. Cortisol and cortisone 

concentrations were -23.98 (95% confidence interval (CI):-0.47.12,-11.99; p for trend=0.006) 

and -63.21 ng/mL (95% CI:-132.56, -26.72; p for trend <0.001) lower, respectively, in infants 

with prenatal PFOS exposure in the fourth quartile compared with those in the first quartile. The 

highest quartile of prenatal PFOS exposure was positively associated with a 1.33 ng/mL higher 

DHEA level compared with the lowest quartile (95% CI: 0.17, 1.82; p for trend=0.017), whereas 

PFOA showed a negative association with DHEA levels (quartile 4 vs 1: -1.23ng/mL, 95% CI: -

1.72, -0.25; p for trend=0.004). We observed no significant association between PFCs and 

androstenedione levels.  

Conclusions: Our results indicate that prenatal exposure to PFCs is significantly associated with 

glucocorticoid and DHEA levels in cord blood.  
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Introduction 

Perfluorinated chemicals (PFCs) are man-made chemicals that have been widely used in 

different types of industry for the past 60 years. They are ubiquitous and widely detected 

in the environment, wildlife, and humans. The main pathway of exposure to PFCs in the 

general population is through the oral route, including digestion of contaminated food 

and water (Fromme et al. 2009; D’eon and Mabury 2011). Perfluorooctane sulfonate 

(PFOS) and perfluorooctanoate (PFOA) are the most abundant and commonly detected 

PFCs in biota and humans. PFOS was added to Annex B of the Stockholm Convention on 

Persistent Organic Pollutants (POPs) in 2009 (United Nations Environment Programme 

2007). Although PFOS and PFOA are being voluntarily phased out by several industries, 

they are persistent and still present in older products. PFCs are resistant to metabolism 

and have long elimination half-lives; serum elimination of PFOS and PFOA in human 

sera is estimated to take 5.4 and 3.8 years, respectively (Olsen et al. 2007). This results in 

the bioaccumulation of PFCs in the human body. 

Recent research has shown that PFCs perturb metabolic endpoints, including lipid 

synthesis, glucose metabolism, and thyroid hormone balance in animals (Seacat et al. 

2003; Thibodeaux et al. 2003). In addition, PFCs have been shown to decrease 

testosterone and increased estradiol levels in the serum of mice (Lau et al. 2007; Wan et 

al. 2011; López-Doval et al. 2014). Some reports have found that PFCs can increase 

corticosterone in rodents (Austin et al. 2003; Zheng et al. 2009). In contrast, other studies 
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have found that PFCs reduce cortisol and corticosterone levels in salmon and human cells 

(Liu et al. 2010; Mortensen et al. 2011). 

Increased steroid hormone production during pregnancy is essential to meet both the 

maternal demand for increased estrogens and cortisol production and the fetal demand for 

reproductive and physical growth and development. In contrast, excess cortisol may also 

be harmful to the fetus. Pregnancy is a transient physiologic period of hypercortisolism 

during which cortisol levels increase to two to three times their normal levels. However, 

the fetus is protected against this cortisol rise, because 11β-hydroxysteroid 

dehydrogenase 2 (11β-HSD2) in the placenta inactivates cortisol into cortisone.  The 

human fetal adrenal gland is enormous relative to that of the adult organ, and adrenal 

steroid synthesis is increased in the fetus. The major steroid produced by the fetal adrenal 

gland is sulfoconjugated dehydroepiandrosterone (DHEAS) and DHEA, which are the 

main precursors of sex hormones and cortisol antagonists (Mastorakos and Ilias 2003). 

A fetus is exposed to PFCs because of maternofetal passage during organ 

development (Inoue et al. 2004). Some epidemiological studies in the general population 

suggest that these compounds are associated with poor birth outcomes such as reduced 

birth size (Fei et al. 2007; Washino et al. 2009; Johnson et al. 2014). Cholesterol is a 

substrate of all steroid hormones. Previous human studies have reported that PFCs may 

change the cholesterol profile in pregnant (Starling et al. 2014) and non-pregnant women 

(Frisbee et al. 2010; Winquist et al. 2014). Joensen et al. (2013) reported an inverse 

association between PFOS and testosterone levels in serum samples of adult men. 
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Previously, our group has reported a negative association between prenatal PFOS and 

progesterone hormone levels of cord blood samples in male and female infants. In 

addition, PFOS was negatively associated with testosterone/estradiol in male infants, 

whereas prenatal PFOA exposure was positively associated with progesterone levels in 

cord blood samples of both sexes (Itoh et al. 2014). However, the effects of PFCs on 

glucocorticoid hormones and androgenic hormones (the main substrates of testosterone 

and estrogen) are not well understood in humans.  

We investigated whether prenatal exposure to PFOS and PFOA was associated with 

cortisol and cortisone levels in cord blood samples in a birth cohort using a prospective 

design. In addition to glucocorticoids, to gain a better understanding of the effects of 

PFCs on steroidogenesis, we examined the association of PFCs with DHEA and 

androstenedione as androgenic hormones in cord blood and assessed the balance of 

glucocorticoids and androgenic hormones in infants. 

Methods  

Study population. This study was part of the Hokkaido Study on the Environment and 

Children’s Health conducted between July 2002 and October 2005. The details of this 

study have been described previously (Kishi et al. 2011 and 2013). In this prospective 

birth cohort, pregnant women between 23-35 weeks of gestation were recruited and gave 

birth at one hospital in Sapporo, Japan. All participants were native Japanese and 

residents of Sapporo city or the surrounding areas. Of the 1,796 potentially eligible 

women, the following subjects were excluded: women who decided to participate in the 
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Japanese cord blood bank (22% of those approached) and women who decided to deliver 

at another hospital (3% of those approached). Ultimately, 514 (28.6%) pregnant women 

agreed to participate in this study. Of the 514 mother-infant pairs, 10 were excluded due 

to miscarriage, stillbirth, relocation, or voluntary withdrawal from the study before 

follow-up. 

Questionnaires and medical records. A self-administered questionnaire survey was 

completed after the second trimester of pregnancy that contained information related to 

previous medical history, smoking, socioeconomic status, alcohol, and caffeine intake 

during pregnancy, and food intake frequency during pregnancy including daily fish intake 

(Washino et al. 2009). A self-administered questionnaire described by Nagata et al. 

(1998) was used to estimate alcohol and caffeine intake during pregnancy. Medical 

information, including maternal age, maternal body mass index (BMI) before pregnancy, 

parity, gestational age, pregnancy complications, type of delivery, infant’s sex, and birth 

size, was obtained from participant medical records. All participants provided written 

informed consent and the study protocol was approved by the institutional ethical board 

for epidemiological studies at the Graduate School of Medicine and the Center for 

Environmental and Health Sciences, Hokkaido University. 

Blood sampling and exposure assessment. A 40-mL blood sample was taken from the 

maternal peripheral vein after the second trimester of pregnancy to measure PFOS and 

PFOA levels. All samples were stored at -80 °C until analysis. Detailed methods of the 

measurement of PFOS and PFOA have been described in our previous report (Nakata et 
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al. 2009). In brief, serum samples (0.1 mL) were mixed with 0.2 mL internal standard 

(13C4-PFOS-Na+ and 13C2-PFOA) solution containing acetonitrile. After centrifugation, 

the supernatant was transferred to a polypropylene tube. An aliquot of the filtered sample 

solution was subjected to column-switching liquid chromatography-tandem mass 

spectrometry (LC-MS-MS). The detection limit for both PFOS and PFOA was 0.5 

ng/mL. The PFOS levels were detected in all samples, and for samples with PFOA levels 

below the detection limit, we used a value of half the detection limit (0.25 ng/mL)  

Outcome assessment. Cord blood samples (10–30 mL) were collected from the umbilical 

vein at delivery and stored at -80 °C until analysis. Concentrations of cortisol, cortisone, 

DHEA, and androstenedione were measured in cord blood samples using LC–MS/MS 

(Yamashita et al. 2007a, 2007b) at Aska Phrama Medical Co., Ltd (Kanagawa, Japan). 

The detection limits for cortisol and cortisone were 0.250 and 0.100 ng/mL, respectively. 

The detection limit for DHEA and androstenedione was 0.010 ng/mL. 

Data analysis. The following subjects were excluded from the analysis of associations 

between maternal PFCs and glucocorticoids: women with pregnancy-induced hypertension 

(n=11), women with diabetes mellitus (n=1), mother-infant pairs with fetal heart failure 

(n=1), and twins (n=7). After exclusion of the afore-mentioned subjects, data on PFOS and 

PFOA concentrations in 429 mother–infant pairs were available. Of those, data on maternal 

blood during pregnancy and infant cord blood samples in 185 pairs were available and 

included in the data analysis. Because of the skewed distributions, we treated levels of 

PFCs, glucocorticoid and androgenic hormones as a continuous variable on a log10 scale. 
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We analyzed correlations between PFOS and PFOA concentrations and the characteristics 

of the mothers and infants using the Spearman correlation test, the Mann–Whitney U-test, 

and Kruskal-Wallis test. The same statistical analyses were performed to find associations 

between steroid hormone levels and participants’ characteristics. We performed multiple-

regression analysis to examine the association between glucocorticoid and androgenic 

hormones and the levels of PFCs in maternal serum samples. Potential confounders were 

selected according to the current results in this paper influencing PFC exposure levels 

(smoking and caffeine intake during pregnancy, blood sampling period), hormone levels or 

both (parity) as shown in Tables 2 and 4 (p<0.1). Because of the association of fetal serum 

steroid hormone levels in humans to gestational age (Fowden et al. 1998, Rog-Zielinska et 

al. 2014), we also considered this as a confounder. In addition, we included maternal 

educational levels as an indicator of socioeconomic status into the fully adjusted models. 

To assess a dose-response relationship, we divided PFC levels into four quartiles and least 

square means (LSMs) and 95% confidence intervals (CI) were calculated. To calculate a p 

value for the trend, we assigned the median concentration to all persons for each 

corresponding quartile. The least square means of the steroid hormones for each quartile 

were compared using the Hsu-Dunnet method to accommodate for multiple comparisons. 

We performed all of the statistical analyses using JMP clinical 5 (SAS Institute Inc., NC, 

USA) and results were considered significant when p < 0.05. 
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Results  

In total, 185 mother-infant pairs were included in this study. The average age of the 

mothers at birth was 29.7 years (standard deviation (SD) 4.7); 53.5% of mothers were 

nulliparous (Table 1). Among pregnant women, 17.8 % smoked and 32.4 % consumed 

alcohol during pregnancy. Mean (±SD) birth weight was 3130.4 g (±331.6), and 43.8 % 

of newborns were boys. PFOS levels were detected in all of the samples, however PFOA 

levels were not detected in 11 maternal serum samples (5.9 % of participants). The median 

(minimum, maximum) values of PFOS and PFOA were 5.20 ng/mL (1.50, 16.20 ng/mL) 

and 1.40 ng/mL (<limit of detection, 5.30 ng/mL), respectively (Table 2). PFOS and PFOA 

concentrations were modestly correlated (Spearman’s Rho= 0.270, p-value <0.001). We 

observed statistically significant differences in mean PFOS concentrations by parity, 

smoking during pregnancy and blood sampling period. Additionally, there were significant 

differences in mean PFOA concentrations by parity, and smoking and caffeine intake 

during pregnancy.  

Median (25-75 percentile) values of cortisol, cortisone, DHEA and androstenedione in 

cord blood samples were 39.0 (22.5-65.6), 96.7(69.1-124.4), 2.3(1.8-3.1), and 0.45 (0.36-

0.58) ng/mL, respectively (Table 3). The detection rate of these steroid hormones in cord 

blood samples was 100%. We found a strong positive correlation between cortisol and 

cortisone as well as DHEA and androstenedione levels. Furthermore, glucocorticoids 

showed a negative correlation with DHEA levels (Supplemental Material, Table S1). 
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The relationship between the cord blood levels of steroids and maternal and infant 

characteristics are shown in Table 4. Cortisol and cortisone levels in cord blood showed a 

negative association with maternal age (p<0.07). Glucocorticoid levels in cord blood of 

infants with multiparous mothers were significantly lower compared with those in infants 

with nulliparous mothers (p<0.001). Gestational age had a non-significant positive 

correlation with cortisol levels. DHEA and androstenedione levels did not show any 

significant association with maternal or infant characteristics. 

As shown in Table 5, after controlling for potential confounders, prenatal PFOS 

concentration was inversely associated with cortisol levels (β = -0.844; 95% CI: -1.31, -

0.378; p-value < 0.001). Similarly, we observed a significant negative association between 

PFOS and cortisone levels (β = -1.15; 95% CI: -1. 79, -0.515; p value <0.001). In addition, 

prenatal PFOS concentrations were positively associated with DHEA levels (β =0.365; 

95% CI: 0.112, 0.618; p-value = 0.004). We found a non-significant positive association 

between PFOA and cortisol (β =0.244; 95% CI: -0.119, 0.607; p-value = 0.186) and 

cortisone levels (β = 0.390; 95% CI: -0.108, 0.889; p-value=0.124). Prenatal exposure to 

PFOA was negatively associated with DHEA levels (β = -0.250; 95% CI: -0.442, -0.058; p 

value = 0.010). In addition, we assessed the association of PFCs with the cortisol to 

cortisone, cortisol to DHEA, and the glucocorticoid to androgenic hormones ratios. PFOS 

was negatively associated with the ratios of cortisol/DHEA and glucocorticoid/androgenic 

hormones but positively associated with cortisol/cortisone ratio. In contrast, PFOA 

showed a positive non-significant association with cortisol to DHEA ratio, and the 
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glucocorticoid to androgenic hormones ratios. For further examination, the association of 

PFCs with glucocorticoids and androgenic hormones was stratified by sex to identify any 

sex differences. However, we did not find any specific differences by sex, just that the 

association of PFCs and DHEA was stronger among boys compared with girls 

(Supplemental Material, Table S2 and S3).  

We also divided maternal PFC levels into quartiles and examined the dose-response 

relationship between PFCs and steroid hormones (Figure 1 and Supplemental Material, 

Table S4). The quartile analysis after full adjustment showed that the highest quartile of 

PFOS was associated with a -23.98 ng/mL (95% CI: -47.12, -11.99; p for trend=0.006) in 

cortisol and -63.21 ng/mL (95% CI: -132.56, -26.72; p for trend <0.001) in cortisone levels 

compared with the lowest quartile. PFOA showed a positive trend for glucocorticoid levels 

but was not statistically significant. In addition, we found significant increases in DHEA 

levels across PFOS quartiles (quartile 4 vs 1 difference: 1.33 ng/mL, 95% CI: 0.17, 1.82; p 

for trend = 0.017), but significant decreases in DHEA levels among PFOA quartiles 

(quartile 4 vs 1 difference= -1.23 ng/mL, 95% CI: -1.72, -0.25; p for trend = 0.004). We did 

not observe a dose-response relationship between PFCs and androstenedione levels. 

Discussion 

This study addresses the association of PFCs with cord blood glucocorticoid and 

androgenic hormone levels in a prospective birth cohort. In this study, we found a 

significant negative association of prenatal PFOS levels with cortisol and cortisone levels 

in cord blood samples. In addition, we found a non-significant positive association of 
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prenatal PFOA with cortisol and cortisone levels. We observed a positive association 

between PFOS and DHEA levels, whereas PFOA was inversely associated with DHEA 

levels. Our results provide new evidence regarding the association of exposure to low levels 

of PFCs in utero with the concentration of glucocorticoid and androgenic hormones in the 

next generation.  

Median maternal concentrations for PFOS and PFOA in the current study were 5.2 and 

1.4 ng/mL, respectively, which are lower than the median values of cohorts conducted in 

the US (PFOS: 8.2, PFOA: 2.9 ng/mL) (Stein et al. 2012), Denmark (PFOS: 21.5, PFOA: 

3.7 ng/mL) (Halldorsson et al. 2012), Norway (PFOS: 13, PFOA: 2.2 ng/mL) (Starling et 

al. 2014), and Korea (PFOS: 9.3, PFOA: 2.6 ng/mL) (Lee et al. 2013). 

Perinatal steroid hormone concentrations and their variabilities play an essential part in 

ensuring optimal conditions for the start of human life and maintaining homeostasis in the 

post-natal period. The correlation between steroid hormones in maternal and cord blood 

samples is poor. Therefore, steroid hormone concentrations of cord blood provide a better 

indicator of fetal endocrine milieu (Troisi et al. 2003). Steroid hormones fluctuate during 

pregnancy and in postnatal life; for example androgenic hormones gradually increase in 

maternal blood during pregnancy and are present in high levels at birth in cord blood but 

rapidly decrease during early infancy (Kuijper et al. 2013). Also, animal and human data 

suggest that perinatal glucocorticoid levels program the fetal HPA axis affecting its 

development, resulting in changes in HPA axis function that persist throughout life 

(Warffan and Davis 2012; Kapoor et al. 2008). Therefore, cord blood glucocorticoid and 
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androgenic hormone levels may be appropriate indicators to predict HPA axis function and 

health in later life.  

The values we obtained for glucocorticoids in cord blood samples in our study are 

comparable with those in cord blood samples both in and outside of Japan (Hasegawa et al. 

2010; Anderson et al. 2010). In our study, glucocorticoid levels did not differ by sex, and 

the average DHEA level was higher in female infants, which is in line with previous studies 

(Ishimoto and Jaffe 2011). Pregnancy is a transient, but physiologic, period of 

hypercortisolism, and glucocorticoids are essential for regulating and/or modulating normal 

physiologic functions in metabolism, growth, neurodevelopment, the immune system, 

blood pressure maintenance, and fluid and electrolyte homeostasis (Reynolds 2010; Braun 

et al. 2013). Moreover, glucocorticoids have a crucial role in late gestational lung and heart 

maturation, and insufficient or excess amounts of these hormones have lifelong adverse 

effects on the cardiovascular system (Rog-Zielinska et al. 2014; Ishimoto and Jaffe 2011). 

In addition, cord blood cortisol level is lower in infants with intrauterine growth retardation 

compared with infants with appropriate growth for their gestational age (Strinic et al. 

2007). However some other reports suggest associations between prenatal exposure to 

synthetic glucocorticoids and reduced birth size (Khan et al. 2011). Our findings suggest 

that dyshomeostasis of glucocorticoids and DHEA at birth are associated with in utero 

PFCs exposure, and this may have adverse effects on the hypothalamic-pituitary-adrenal 

(HPA) axis and steroid hormone homeostasis in later life. Therefore, in utero PFC exposure 

may be a public health concern and long term observation of these effects is warranted.  
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Fetal serum glucocorticoid levels in humans are related to gestational age (Rog-

Zielinska et al. 2014). During data analysis, we used gestational age (days) as a confounder 

in the adjusted model to reduce the possibility of the effect of short gestational age on 

decreased cortisol and cortisone levels in cord blood. Within our study population, only one 

infant was premature (gestational age less than 37 weeks). For further examination, we 

excluded this subject from the data analysis, but this did not change the results, indicating 

that the results may not be biased by gestational age as a determinant factor of 

glucocorticoid levels. Some previous studies have suggested that glucocorticoid levels in 

the cord blood of infants born by vaginal delivery are higher compared with infants born by 

caesarian section (Reissland et al. 1999). In our study, all pregnant women had a vaginal 

delivery at the same hospital with uncomplicated singleton pregnancies. Therefore, this 

cannot be a confounder in our study. Our results showed a significant negative association 

of glucocorticoids in cord blood with maternal age and multiparity, which is consistent with 

previous studies (Goedhart et al. 2010). Due to the importance of parity on glucocorticoid 

levels, we stratified the association between PFOS and glucocorticoids by parity (0, 1≥) and 

observed that the association between PFOS and glucocorticoids was stronger in infants 

whose mothers were nulliparous. For further assessment of the association between PFCs 

and glucocorticoids, we included the Apgar score, (1 minute after birth, continuous 

variable) as an indicator of infant stress at birth. into the adjusted model and the results 

remained consistent. Moreover, PFOA and PFOS levels were not strongly correlated in this 

study (Spearman’s Rho= 0.270), and mutual adjustment did not change the results in any 

consistent way. 
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The fetal adrenal gland uses large amounts of progesterone supplied by the placenta for 

cortisol synthesis (Mastorakos and Ilias 2003). PFOS can inhibit the secretion of 

progesterone in a concentration-dependent manner in human placental syncytiotrophoblasts 

(Zhang et al. 2015). Barret et al. (2015) reported a negative association between serum 

PFOS exposure (but not PFOA) and saliva progesterone levels in healthy nulliparous 

women, aged 25-35. In addition, we reported that prenatal exposure to PFOS was inversely 

associated with progesterone levels in cord blood of male and female infants in the same 

cohort. In contrast, prenatal PFOA levels were positively associated with cord blood 

progesterone levels in male and female infants (Itoh et al. 2014). Therefore, this may partly 

explain the negative association of PFOS but not PFOA with glucocorticoids in the current 

study. Previously, we reported a negative association between prenatal exposure to PFOS 

and maternal triglyceride and long-chain polyunsaturated fatty acids (FAs) during 

pregnancy, including essential FAs and omega 3 and omega 6 FAs in the same cohort 

(Kishi et al. 2015) whereas, PFOA had a non-significant positive association with TG and 

most FAs. However, we did not measure cholesterol levels in this population, making it 

difficult to interpret the mechanistic effects of PFCs on steroid hormones through 

cholesterol metabolism.  

The mode of action(s) that explains the correlation between PFC exposure and steroid 

hormones is not fully understood. However, the most putative targets of PFCs are nuclear 

receptors including PPAR-α, -γ, estrogen, and androgen receptors (Vanden Heuvel et al. 

2006; Takacs and Abbott 2007; Kjeldsen and Bonefeld-Jørgensen 2013). These genes are 
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involved in cholesterol metabolism, lipid transport, and steroid synthesis. Therefore, PFCs 

may change steroid hormone homeostasis by affecting different genes and mechanisms of 

action. 

 PFCs, especially PFOS, inhibit the activity of several enzymes in the pathway of 

steroidogenesis in human cells, such as 3β-hydroxysteroid dehydrogenase (HSD3B), that 

convert pregnenolone to progesterone and DHEA to androstenedione (Zhao et al. 2010). 

PFOS, and PFOA with weaker potency, inhibits 11β-hydroxysteroid dehydrogenase 2 (11β-

HSD2) which converts cortisol to cortisone (Zhao et al. 2011; Yet et al. 2014). Therefore, 

these modified enzyme activities may disrupt the cortisol/cortisone, cortisol/DHEA and 

C19-steroids (androgenic hormones) and C21-steroids (glucocorticoids) ratios. We found 

that PFOS is associated with a decrease in the cortisol/DHEA ratio and 

glucocorticoid/androgenic hormone ratio, indicating that PFOS may shift steroidogenesis to 

androgenic hormones (Table 5). Also, PFOS was associated with an increased 

cortisol/cortisone ratio which suggests inhibition of 11β-HSD2 enzyme. In contrast, PFOA 

was associated with these ratios in the opposite direction. In this study, we found that the 

direction of PFOS and PFOA effects on steroids are different and further studies are 

necessary to replicate these findings and clarify the mechanistic effects of these PFCs on 

steroidogenesis. 

In this study, we measured prenatal PFC levels in a prospective birth cohort and have 

provided new evidence regarding the association between in utero PFC exposure levels and 

cord blood steroid hormones. In addition, we assessed steroid hormone levels using LC-



Environ Health Perspect DOI: 10.1289/EHP142 
Advance Publication: Not Copyedited 

 

18 

 

MS-MS, which has a very high sensitivity and specificity compared with immunoassay. 

However, this study has some limitations. The participation rate in this study was low due 

to the exclusion of eligible women who decided to participate in the Japanese cord blood 

bank. In addition, only mother-infant pairs with available prenatal and cord blood samples 

(n=185) were included in the present study, which may have led to potential selection bias. 

Mother-infants pairs included in the present analysis compared with the original cohort 

were more primipara, had longer gestational age and a lower percentage of male infants 

(Supplementary data, Table S5). However, compared with the original cohort, mother-

infant pairs in the present data analysis had similar PFCs exposure levels as well as 

mother/infant characteristics including maternal age, prepregnancy maternal BMI, 

socioeconomic status, and smoking rate during pregnancy.  

Our group previously reported time trends of 11 types of PFCs between 2003 and 2011 

in plasma samples during pregnancy in Hokkaido, Japan. The results indicated that 

concentrations of PFOS and PFOA were declining, whereas PFCs with longer carbon chain 

such as PFNA and PFDA levels were increasing (Okada et al. 2013). Additionally, 

previous laboratory studies suggest greater toxicity of PFCs with longer carbon chains 

(Wolf et al. 2008). Therefore, more studies to clarify the effects of PFCs with longer carbon 

chain on steroid hormone profile are necessary. In addition, some recent studies have 

suggested that the placenta plays an important role in regulation of 11β-HSD enzyme 

activity and glucocorticoid levels resulting in poor birth weight and neurodevelopment 

outcomes (Marsit et al. 2012). The placenta is an important tissue for regulating 
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endogenous hormone synthesis and passage. Examination of placental tissue along with 

cord blood may be a promising approach for future studies. 
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Table 1. Characteristics of subjects participating in the Hokkaido Study on Environment 

and Children’s Health, Sapporo, Japan, 2002-2005 (n =185). 

Characteristics N (%) or mean±SD 

Maternal characteristics  

Age (years) 29.7±4.7 

Pre-pregnancy BMI (kg/m2) 21.0±2.9 

Parity (times)a  

0 99 (53.5) 

   ≥1 86 (46.5) 

Educational level (years)  

   ≤12 86 (46.5) 

   ≥13 99 (53.5) 

Annual household income (million yen)a  

   less than 5 129 (70.5) 

   more than 5 54 (29.5) 

Smoking during pregnancy  

   Yes 33 (17.8) 

   No 152 (82.2) 

Alcohol intake during pregnancy  

   Yes 60 (32.4) 

   No 125 (67.6) 

Caffeine intake during pregnancy (mg/day) 143.4±126.2 

Blood sampling period  

   23-31 weeks 74 (40) 

   32-34 weeks 43 (23.2) 

   35-41 weeks 68 (36.8) 

Gestational age (days) 278.9±6.7 

Infant characteristics  

Sex  

Male  81 (43.8) 

Female 104 (56.2) 
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Birth weight 3130.4±331.6 

Birth length 48.4±1.9 

a Missing data: annual household income (n=2). 
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Table 2. Maternal blood PFOS and PFOA levels (ng/mL) in relation to the characteristics 

of subjects participating in the Hokkaido Study on Environment and Children’s Health, 

Sapporo, Japan, 2002-2005 (n =185).  

Characteristics 

  

N PFOS 

mean ± SD, 

median (25–75 

percentile), 

or correlationa 

p-

Value 

PFOA 

mean ± SD, 

median (25–75 

percentile), 

or correlationa 

p-

Value 

Mean (±SD) 185 5.78±2.7  1.60 (0.96)  

Median (minimum, maximum) 185 5.20 (1.50, 16.20)  1.40 (<LOD, 5.30)  

Maternal characteristics      

Age (years) a 185 ρ = -0.047 0.525 ρ = -0.048 0.512 

Pre-pregnancy BMI (kg/m2) a 185 ρ = -0.027 0.712 ρ = -0.031 0.671 

Parity (times) b      

0 99 6.37±0.27 0.001 1.94±0.08 <0.001 

≥1 86 5.09±0.29  1.21±0.09  

Educational level (years) b      

≤12 86 5.59±0.30 0.392 1.53±0.10 0.350 

≥13 99 5.94±0.27  1.66±0.09  

Annual household income 

(million yen) b, d 

     

less than 5 129 5.64±0.24 0.374 1.63±0.08 0.606 

more than 5 54 6.04±0.37  1.55±0.13  

Smoking during pregnancy b      

Yes 33 4.73±0.47 0.015 1.27±0.16 0.027 

   No 152 6.01±0.22  1.67±0.07  

Alcohol intake during pregnancy b      

   Yes 60 5.61±0.35 0.324 1.61±0.12 0.904 
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   No 125 5.86±0.24  1.60±0.08  

Caffeine intake during pregnancy 

(mg/day) a 

 ρ = -0.083 0.257 ρ = -0.193 0.008 

Fish intake during pregnancy b       

Inshore fish      

     ≤1-2 times/month 96 5.70±0.28 0.684 1.63±0.09 0.632 

      ≥1-2 times/week 89 5.86±0.29  1.57±0.10  

Deep sea fish      

      ≤1-2 times/month 83 5.60±0.30 0.435 1.59±0.10 0.877 

      ≥1-2 times/week 102 5.92±0.27  1.61±0.09  

Blood sampling period c      

23-31 weeks 74 6.38±0.30 <0.001 1.77±0.11 0.086 

32-34 weeks 43 6.44±0.40  1.61±0.14  

35-41 weeks 68 4.70±0.32  1.41±0.11  

Gestational age (days) a  ρ = 0.028 0.702 ρ = 0.062 0.399 

Infant characteristics      

Sex b      

Male  81 6.16±0.30 0.100 1.73±0.10 0.117 

   Female 104 5.48±0.27  1.50±0.09  

Birth weight a 251 ρ = -0.108 0.140 ρ = -0.162 0.026 

Statistical analysis performed using aSpearman's correlation test (ρ), and bMann-Whitney 

U-test and cKruskal-Wallis test. d Missing data: annual household income (n=2). 
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Table 3. Concentrations (ng/mL) of steroid hormones in cord blood samples (n= 185). 

  n mean SD Med (25th-75th) >LOD (%) 

Cortisol Total 185 48.3 37.6 39.0 (22.5-65.6) 100 

 Male 81 44.1 30.6 38.2 (21.1-59.6) 100 

 Female 104 51.5 42.0 39.7 (24.4-67.0) 100 

Cortisone Total 185 96.2 43.3 96.7 (69.1-124.4) 100 

 Male 81 97.9 38.7 97.2 (72.4-126.0) 100 

 Female 104 94.9 46.8 95.2 (66.3-124.5) 100 

DHEA Total 185 4.6 10.2 2.3 (1.8-3.1) 100 

 Male 81 3.1 4.2 2.1 (1.6-2.7) 100 

 Female 104 5.8 13.1 2.6 (1.9-3.4) 100 

Androstenedione Total 185 0.63 0.84 0.45 (0.36-0.58) 100 

 Male 81 0.62 0.72 0.47 (0.36-0.60) 100 

 Female 104 0.65 0.93 0.44 (0.35-0.57) 100 
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Table 4. Cord blood glucocorticoid levels (ng/mL) in relation to characteristics of the subjects participating in the Hokkaido Study on 

Environment and Children’s Health, Sapporo, Japan, 2002-2005 (n =185). 

Characteristics 

  

N Cortisol 

mean ± SD, 

or 

correlationa 

p-Value Cortisone 

mean ± SD, 

or 

correlationa 

p-Value DHEA 

mean ± SD,

or 

correlationa 

p-Value Androstenedione

mean ± SD, 

or correlationa 

p-Value 

Maternal characteristics          

Age (years) a 185 ρ = -0.136 0.063 ρ = -0.134 0.068 ρ = -0.053 0.466 ρ = 0.009 0.894 

Pre-pregnancy BMI (kg/m2) a 185 ρ = 0.044 0.546 ρ = 0.030 0.678 ρ = 0.036 0.626 ρ = 0.020 0.782 

Parity (times) b          

0 99 61.2±3.5 <0.001 108.8±4.1 <0.001 5.4±1.0 0.266 0.59±0.08 0.477 

≥1 86 33.4±3.7  82.2±4.4  3.7±1.1  0.68±0.09  

Educational level (years) b          

    ≤12 86 48.6±4.0 0.915 94.0±4.6 0.519 5.2±1.1 0.452 0.63±0.09 0.908 

    ≥13 99 48.0±3.7  98.2±4.3  4.1±1.0  0.64±0.08  

Annual household income 

(million yen) b,d 

         

    less than 5 129 49.9±3.3 0.499 98.0±3.7 0.554 4.2±0.87 0.612 0.62±0.07 0.101 

    more than 5 54 45.8±5.1  93.8±5.8  5.0±1.3  0.67±0.11  

Smoking during pregnancy b          

    Yes 33 40.9±6.5 0.901 95.0±7.5 0.852 3.8±1.7 0.623 0.50±0.14 0.318 
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    No 152 48.1±3.0  96.5±3.5  4.8±0.8  0.66±0.06  

Alcohol intake during 

pregnancy b 

         

    Yes 60 42.8±4.8 0.169 95.0±5.6 0.789 4.0±1.3 0.312 0.70±0.10 0.47 

    No 125 50.9±3.3  96.8±3.8  4.9±0.9  0.60±0.07  

Caffeine intake during 

pregnancy (mg/day) a 

 ρ = -0.004 0.953 ρ = -0.077 0.292 ρ = -0.003 0.966 ρ = -0.063 0.392 

Fish intake during pregnancy b           

    Inshore fish          

       ≤1-2 times/month 96 46.7±3.8 0.545 95.0±4.4 0.68 3.8±1.0 0.280 0.65±0.08 0.732 

       ≥1-2 times/week 89 50.0±3.9  97.6±4.6  5.5±1.0  0.61±0.08  

Deep sea fish          

       ≤1-2 times/month 83 43.5±4.1 0.122 97.0±4.7 0.836 4.0±1.1 0.489 0.62±0.09 0.850 

       ≥1-2 times/week 102 52.1±3.7  95.6±4.3  5.1±1.0  0.64±0.08  

Gestational age (days) a 185 ρ = 0.105 0.153 ρ = 0.037 0.611 ρ = 0.009 0.900 ρ = -0.037 0.608 

Infant characteristics          

Sex b          

 Male 81 44.1±4.1 0.18 97.9±4.8 0.637 3.1±1.1 0.085 0.62±0.09 0.799 

    Female 104 51.5±3.6  94.9±4.2  5.8±1.0  0.65±0.08  

Birth weight a 185 ρ = 0.001 0.983 ρ = 0.087 0.235 ρ = -0.052 0.476 ρ = 0.048 0.515 

Statistical analysis performed using aSpearman's correlation test (ρ), and bMann-Whitney U-test and cKruskal-Wallis test. d Missing data: annual 

household income (n=2).
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Table 5. Association of prenatal PFC levels with cord blood glucocorticoids and 

androgenic hormones (n=185). 

 PFOS  PFOA 

  β (95% CI) p-value  β (95% CI) p-value 

Cortisol         

   Crude -0.774 (-1.19, -0.356) <0.001  0.231 (-0.083, 0.546) 0.149 

   Adjusted a -0.844 (-1.31, -0.378) <0.001  0.244 (-0.119, 0.607) 0.186 

Cortisone         

   Crude -1.11 (-1.68, -0.555) <0.001  0.222 (-0.205, 0.650) 0.306 

   Adjusted a -1.15 (-1.79, -0.515) <0.001  0.390 (-0.108, 0.889) 0.124 

DHEA         

   Crude 0.342 (0.120, 0.564) 0.002  -0.155 (-0.320, 0.009) 0.064 

   Adjusted a 0.365 (0.112, 0.618) 0.004  -0.250 (-0.442, -0.058) 0.010 

Androstenedione         

   Crude -0.038 (-0.212, 

0.134) 

0.657  -0.099 (-0.225, 0.026) 0.119 

   Adjusted a -0.013 (-0.208, 

0.181) 

0.893  -0.105 (-0.251, 0.041) 0.157 

Cortisol/Cortisone        

   Crude 0.344 (0.086, 0.602) 0.009  0.008 (-0.183, 0.200) 0.928 

   Adjusted a 0.312 (0.025, 0.599) 0.032  -0.146 (-0.364, 0.072) 0.188 

Cortisol/DHEA ratio        

   Crude -1.11 (-1.71, -0.516) <0.001  0.386 (-0.064, 0.838) 0.092 

   Adjusted a -1.21 (-1.88, -0.531) <0.001  0.494 (-0.030, 1.02) 0.064 

Glucocorticoid/androgenic 

 hormones ratio 

       

   Crude -1.24 (-1.89, -0.608) <0.001  0.368 (-0.115, 0.852) 0.134 

   Adjusted a -1.33 (-2.05, -0.601) <0.001  0.551 (-0.013, 1.11) 0.057 

a Fully adjusted for gestational age, maternal age, parity, smoking and caffeine intake during pregnancy, 

maternal educational level, and blood sampling period. 

Both exposure and outcome measures were log10 transformed. 
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Figure 1. The dose-response relationship of prenatal PFOS (A) and PFOA (B) quartiles 

with glucocorticoid and DHEA levels in cord blood, Sapporo, Japan, 2002-2005 (n=185). 

The LSMs were adjusted for gestational age, maternal age, smoking and caffeine intake 

during pregnancy, parity, maternal educational level and the blood sampling period. The 

LSMs were back transformed from log10 to normal values and the error bars depict the 

upper and lower 95% CI. Q = quartile.      
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Figure 1. 
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